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Abstract

How Much of the Corporate-Treasury

Yield Spread Is Due to Credit Risk?

No consensus has yet emerged from the existing credit risk literature on how much

of the observed corporate-Treasury yield spreads can be explained by credit risk. In this

paper, we propose a new calibration approach based on historical default data and show

that one can indeed obtain consistent estimate of the credit spread across many different

economic considerations within the structural framework of credit risk valuation. We find

that credit risk accounts for only a small fraction of the observed corporate-Treasury yield

spreads for investment grade bonds of all maturities, with the fraction smaller for bonds

of shorter maturities; and that it accounts for a much higher fraction of yield spreads for

junk bonds. We obtain these results by calibrating each of the models – both existing

and new ones – to be consistent with data on historical default loss experience. Different

structural models, which in theory can still generate a very large range of credit spreads,

are shown to predict fairly similar credit spreads under empirically reasonable parameter

choices, resulting in the robustness of our conclusion.



1 Introduction

Corporate bonds typically trade at higher yields than Treasury bonds of comparable ma-

turities. The yield spread is partly due to the credit risk of corporate bonds, and is thus

frequently referred to as the “credit spread.” Credit risk, however, is only one of the factors

contributing towards the corporate-Treasury yield spread; other factors include illiquidity,

call and conversion features of some corporate bonds, and asymmetric tax treatments of cor-

porate and Treasury bonds. In this paper, we ask how much of the corporate-Treasury yield

spread is actually attributable to credit risk. This question is important to research and

practice on credit risk. It is also important because its resolution can help us understand

how well the corporate bond and equity markets are integrated, which has implications for

the theory of capital structure.1

Any attempt to address this question needs to start from a theoretical framework on

how credit risk should be priced.2 One of the most widely employed frameworks of credit

risk valuation is the structural approach pioneered by Black and Scholes (1973) and Merton

(1974), and subsequently extended by many researchers over the last few decades.3 This

approach treats a firm’s equity and debt as contingent claims on its asset value. We conduct

our analysis within this framework.4

Many previous studies within the structural framework have also analyzed how much

of the observed corporate-Treasury yield spread can be explained by credit risk, but so far,

no consensus has emerged from these studies.

Most of the controversy focuses on medium- and long-maturity bonds. While many

studies, including the early work by Jones, Mason, and Rosenfeld (1984), have shown

that the credit yield spreads predicted by the original Merton (1974) model are far be-

low the empirically observed corporate-Treasury yield spreads, others have argued that

1See Titman (2002) for a recent review of the effect of market segmentation on capital structure theory.
2This creates a joint hypothesis problem. When a calculated credit yield spread based on a credit-risk

model fails to match the empirically observed corporate-Treasury yield spread, some may conclude that

the model is wrong. This conclusion, however, relies on an implicit assumption that all of the corporate-

Treasury yield spread should be due to credit risk. In this paper, we take the view that credit risk is

only one of the factors behind the corporate-Treasury yield spread, and prefer to interpret the calculated

credit yield spread as the part of the observed yield spread attributable to credit risk, at least according

to existing theories.
3A partial list of theoretical extensions within this framework includes Anderson and Sundaresan (1996),

Black and Cox (1976), Collin-Dufresne and Goldstein (2001), Duffie and Lando (2001), Geske (1977), Kim,

Ramaswamy, and Sundaresan (1993), Leland (1994, 1998), Leland and Toft (1996), Longstaff and Schwartz

(1995), Mella-Barral and Perraudin (1997), Nielsen, Saa-Requejo, and Santa-Clara (1993), and Zhou (2001).
4Another widely used framework of credit risk valuation is the reduced-form approach (see, for example,

Jarrow and Turnbull (1995) and Duffie and Singleton (1999)).
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extensions of the Merton model within the structural framework that incorporate certain

realistic economic considerations can fully explain the observed yield spreads (at least for

bonds with long enough maturities). For example, Anderson and Sundaresan (1996) and

Anderson, Sundaresan, and Tychon (1996) have argued that incorporating strategic de-

fault by equity holders who try to extract concessions from bondholders can explain why

corporate-Treasury credit spreads should be high (see also Mella-Barral and Perraudin

(1997)); Collin-Dufresne and Goldstein (2001) have argued that firms with good credit

quality are likely to issue more debt, which leads to credit spreads that are comparable

to the observed high yield spreads for long-maturity bonds issued by such firms; Longstaff

and Schwartz (1995) (with an analytically tractable model incorporating bankruptcy costs,

the violation of absolute priority rule, and stochastic interest rates), and Leland (1994,

1998) and Leland and Toft (1996) (with models of endogenous default) have also shown

that structural models are capable of generating a large range of credit spreads that spans

the observed corporate yield spreads.5

Even for short-maturity bonds, it is arguable that no clear consensus exists. While

studies using structural models based on diffusion-type firm value processes conclude that

credit risk cannot possibly explain the observed corporate yield spreads, considerations

such as incomplete accounting information (Duffie and Lando (2001)) and jumps in asset

value (Zhou (2001)) are shown to generate high credit spreads.

Empirically, recent direct tests of structural models conducted by Anderson and Sun-

daresan (2000), Lyden and Saraniti (2000), and Eom, Helwege, and Huang (2002) show

mixed results on the ability of structural models to explain observed corporate yield spreads.

In this paper, we show that a fairly strong consensus on the quantitative magnitude

of credit yield spreads can be reached within the structural framework. The key to our

approach is to require that models within the structural framework confront the available

historical data on bond default. So far, with the exception of KMV (see Kealhofer and

Kurbat (2001)) and a recent study by Leland (2002), few studies have systematically com-

pared the expected level of default loss—both the default probability and the loss rate given

default—predicted by structural models to the observed historical default loss experience,

despite the fact that the perceived severity of potential default loss is clearly important

to bondholders and that structural models are fully capable of making predictions about

expected levels of default loss, in addition to predictions of bond prices and yields.

We show that a large class of structural models—both existing and new ones—that

5Of course, all of the following theoretical models, as well as other theoretical extensions of the Merton

approach that we mention in this paper, are primarily focused on the interesting effects of various realistic

economic considerations on credit risk valuation, and therefore contribute to the literature far more than

their calculated credit spreads, which happens to be the focus of our paper.
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incorporate many realistic economic considerations can indeed generate very consistent

credit yield spreads if each of the models is calibrated to match historical default loss

experience data. The robustness of results under our calibration approach allows us to

conclude that, for investment grade bonds (those with a credit rating not lower than Baa)

of all maturities, credit risk accounts for only a small fraction—typically around 20%, and,

for Baa-rated 10-year bonds, in the 30% range—of the observed corporate-Treasury yield

spreads, and it accounts for a lower fraction of the observed spreads for bonds of shorter

maturities. For junk bonds, however, credit risk accounts for a much larger fraction of the

observed corporate-Treasury yield spreads.

Our work is not the first to emphasize that historical default experience data—collected

and studied carefully over many years by Altman (2001), Moody’s, Standard and Poor’s,

and others—should be important in our attempt to understand credit risk pricing. Outside

of the structural framework, Fons (1994) used statistical methods to understand the im-

plication of default data on the term structure of credit yield spreads, and Elton, Gruber,

Agrawal, and Mann (2001) also made use of default loss data in their study of different

components of corporate-Treasury yield spreads. One common finding from these studies

is that the average historical default loss rate for corporate bonds is typically much smaller

than the observed corporate-Treasury yield spreads, and is only a small fraction of the yield

spreads for investment-grade bonds. Figure 1 provides a visual summary of this finding.

This fact alone, however, should not lead one to automatically conclude that credit

risk accounts for only a small fraction of the observed yield spreads for investment grade

bonds. After all, the expected default loss rate is only part of the (promised) credit yield

spread; the other part is the credit risk premium, defined as the difference between the

expected realized return of a defaultable bond and that of a comparable Treasury bond.

The credit risk premium is required by investors because the uncertainty of default loss

should be systematic—bondholders are more likely to suffer default losses in bad states of

the economy. Moreover, precisely because of the tendency for default events to cluster in

the worst states of the economy, the credit risk premium can be potentially very large. In

fact, some of the models considered in this paper can indeed generate credit risk premia

that are large enough to explain the difference between the observed corporate yield spreads

and historical default loss rate, provided that certain parameter choices are made. The key

question, however, is whether any model can generate such large credit risk premia under

empirically reasonable parameter choices. This question is the main focus of our paper.

The structural approach to credit risk valuation offers a natural and appealing theoret-

ical framework for understanding the credit risk premium. This approach, based on the

contingent-claim analysis method, does not require that we have an accurate theory of the

source of asset or equity premium in most of its applications. An alternative approach to
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estimating the credit risk premium, adopted by Elton, Gruber, Agrawal, and Mann (2001),

is to use linear regressions of bond returns on empirically identified Fama-French factors.

Such an approach is appealing in its simplicity and allows for easy comparison with the

literature on equity returns, but it does rely on the theoretical, not just empirical, accuracy

of the Fama-French factors as drivers of the equity risk premium. In addition, such an ap-

proach may not be able to separate out the credit risk premium from other components of

systematic risk premia – such as liquidity risk premium – in corporate bond returns. For

these reasons, we choose to conduct our analysis in the structural framework. This has the

additional benefit that we can make use of the richness of structural models to analyze the

effects of many economic assumptions on the credit risk premium.

The structural models that we study in this paper represent a cross section of economic

assumptions. They include Longstaff and Schwartz (1995) (with stochastic interest rates),

Leland and Toft (1996) (with endogenously determined default boundaries), Anderson

and Sundaresan (1996), Anderson, Sundaresan, and Tychon (1996), and Mella-Barral and

Perraudin (1997) (with strategic defaults), and Collin-Dufresne and Goldstein (2001) (with

mean-reverting leverage ratios policy). These models, however, may not adequately capture

the intuition that the credit risk premium can be potentially very high if we consider the

fact that some special states of the economy associated with high default probabilities may

also require high market risk premia. In order to investigate the validity of such intuition,

we study two mechanisms through which the existence of such states may lead to high

credit risk premia. First, we consider a credit risk model with a counter-cyclical market

risk premium to capture the effects of business cycles on credit risk premia. Secondly, we

introduce an analytically tractable jump-diffusion structural credit risk model to capture

the effects on credit risk premia of certain future states with both high default risks and

abnormally high stochastic discount factors. We show that, under empirically reasonable

parameter choices, our conclusion remains robust across all of these models.

The main difference between our paper and previous applications of structural models

to the calculation of credit yield spreads is that we calibrate all models to match historical

bond default experience data (both default frequencies and loss rates given default), in

addition to matching data that other studies also made use of, such as balance sheet infor-

mation and equity return data. One limit to our approach is that we do not explore — from

first principles — the effects of various economic assumptions on the default probability

or the recovery rate given default, even though our approach fully takes into account such

effects. Recent work by Leland (2002) on the implication of structural models on default

probabilities provides a nice complement to our work in this regard. The advantage of our

approach, however, is that it allows us to reach robust conclusions regarding the quantita-

tive magnitude of credit yield spreads by using models that are consistent with the actual
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severity of the expected default loss. In addition, it allows us to conclude that most of the

discrepancies among previous calculations of credit yield spreads are due to differences in

predicted default loss rates rather than due to differences in predicted credit risk premia.

Some other studies are also related to our work. Delianedis and Geske (2001) study

the relative importance of different components for corporate yield spreads, but they do

not focus on historical default experience data as we do. Collin-Dufresne, Goldstein, and

Martin (2001) and Campbell and Taksler (2002) study whether economic variables that may

determine default risk can explain the time variation in corporate-Treasury yield spreads,

with the former paper showing that credit-risk-related variables can explain only a small

portion of corporate-Treasury yield spread movements.

The rest of the paper is organized as follows. Section 2 briefly outlines the class of

structural models that we consider, including two new models that we will introduce;

section 3 describes our calibration method; section 4 presents and discusses our calibration

results from various models; and section 5 concludes.

2 Existing and New Structural Models

The question we address in this paper is whether different economic considerations generate

similar credit spreads under our calibration approach. The models we study, therefore,

should satisfy two criteria. First, they should collectively represent the main economic

considerations for credit risk valuation proposed within the structural framework. Secondly,

each of the model should be analytical tractable for our calibration. These criteria allowed

us to choose the following models.

Among the existing models, we will study the two-factor model of Longstaff and Schwartz

(1995) (referred to as LS), the strategic default models of Anderson and Sundaresan (1996),

Anderson, Sundaresan, and Tychon (1996), and Mella-Barral and Perraudin (1997) (col-

lectively referred to as AST-MBP), the endogenous-default models of Leland (1994) and

Leland and Toft (1996) (collectively referred to as LT), and the stationary leverage model of

Collin-Dufresne and Goldstein (2001) (referred to as CDG).6 For completeness, we provide

a brief technical review of these models in Appendix A.

Two new models will also be introduced: one with a time-varying asset risk premium,

and one with a jump-diffusion firm value process. They allow us to capture some important

6Two models notably absent are the original Merton (1974) model and the Geske (1977) model. We

choose not to include Merton (1974) because it cannot easily deal with coupon bonds and does not provide

the possibility of default before maturity. We did, however, apply our calibration approach to the Merton

model, and the results are consistent with those from other models considered here. We omit the Geske

(1977) model because it is not analytically tractable for our calibration approach.
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economic considerations (to be specified later).

Next, we will first briefly review the general structure of all of the considered models,

and then introduce the two new models.

General structure of models:

All models that we consider have the following general structure:

• Firm value process: all structural models that we consider assume that the firm

asset value evolves according to a diffusion process with a constant volatility plus

(possibly) a jump:

dVt = (πv
t + rt − δt)Vt dt + σvVt dW v

t + dJ, (1)

where rt is the riskfree interest rate, πv
t is the asset risk premium, δt is the rate at

which cash is paid out to the firm’s investors (bondholders and stockholders), as a

fraction of the firm asset value, σv is the volatility of the firm’s asset value process,

W v denotes a standard Brownian motion under the real probability measure, and J

is a (de-meaned) jump process (to be specified later for model that has jumps). Both

rt and πv
t can be either deterministic or stochastic.

In the risk neutral measure Q, the firm value process can be written as

dVt = (rt − δt)Vt dt + σvVt dW
vQ
t + dJQ, (2)

where W vQ and JQ are respectively a standard Brownian motion and a (de-meaned)

jump process under the risk-neutral probability measure.

• Default boundary: default occurs at τ = min{t : Vt ≤ V ∗
t }; i.e., when the firm

value Vt falls to or below the level of V ∗
t for the first time. The default boundary {V ∗

t }
can be deterministic or stochastic, exogenously specified or endogenously derived.

• Default recovery rule: at default, bondholders receive a payoff of Π(Vτ , F ), where

F denotes the face value of the bond.

For the models that we consider, the time-t market value of a bond issued by the firm

and maturing at T , Pt,T , can be calculated using the risk-neutral pricing method and is

denoted as

Pt,T = P (Vt, σv, rt, Θ), (3)

where Θ denotes a vector of additional structural parameters in the model such as the

default recovery rate and parameters related to the jump and interest-rate processes.
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This class of models also generate quantitative predictions of default probabilities (or

expected default frequencies (EDFs)) for bonds. The firm value process under the real

measure, shown in equation (1), and the default boundary specification allow us to obtain

the real-world default probabilities. Let Pr(t, T ) denote the cumulative real default proba-

bility over the time interval (t, T ] calculated based on information available at time t. We

can write

Pr(t, T ) = Pr(Vt, σv, rt, π
v
t , Θ). (4)

Note that the real default probability depends on the risk premium associated with the

firm’s asset, while the bond price does not.

A Model with a Counter-Cyclical Asset Risk Premium

The firm asset risk premium is typically assumed to be constant in existing structural

models of credit risk. Some models did not explicitly specify the asset risk premium process,

as they focused primarily on the market prices of corporate bonds, which can be calculated

using the risk-neutral pricing method. Despite such standard assumptions, these models

can easily accommodate a time-varying asset risk premium. This analytic flexibility turned

out to be useful for our study.

Since our approach calibrates models according to the observed default probabilities

and focuses on models’ implications on credit risk premia, we need to use an empirically

reasonable model for the asset risk premium πv
t process. Many empirical studies have

shown that the risk premia in the aggregate equity market is time-varying and predictable

(see Campbell, Lo, and MacKinlay (1997) for a textbook treatment), which implies that

individual stock risk premia should also be time-varying and predictable (see Vuolteenaho

(2002) for some evidence). A model with a time-varying equity risk premium, as we will

discuss later, can capture the effects of the cyclical variation of market risk premia on credit

risk premia.

We consider a model with the following dynamic process for the asset risk premium:

dπv
t = κπ(π̄v − πv

t ) dt + σπ dW π
t , (5)

where κπ, π̄v, and σπ are constant parameters, and W π is a standard Brownian motion

under the real probability measure, which has a correlation coefficient of ρπV with the firm

value process. Later, we will discuss how to fit the parameters according to existing studies

of equity premium predictability.

For analytic tractability and ease of comparison, we follow the Longstaff-Schwartz model

in making all other assumptions, such as the default boundary and the default recovery

rule. Such a credit risk model, which effectively extends the LS model to allow for a
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time-varying asset risk premium, fortunately allows for an analytic solution for the real

cumulative default probability.

The formulas for the bond price Pt,T and the real cumulative default probability Pr(t, T )

in this extended model are shown in the appendix.

A New Tractable Model with a Double-Exponential Jump-Diffusion Asset Value

Process

The structural models reviewed so far all assume that the firm asset value evolves as a

diffusion process with a constant volatility. This approach allows for analytic tractability,

but it may not be realistic. Firm value may change suddenly and unexpectedly in a way

that is best modeled as a jump. More importantly, we will later discuss how incorporating

jumps into the firm value process can capture the potential effects of some future states

with both high default risks and high stochastic discount factors.

But very few studies within the structural approach of credit risk valuation have in-

corporated jumps in the firm value process, because of lack of analytic tractability. The

original Merton model—of firms with a simplified capital structure composed of equity and

a zero-coupon bond—can certainly allow for jumps in the firm value process, but this model

cannot be easily applied to the valuation of coupon bonds and does not allow for default

before maturity, which is not realistic. Zhou (2001) incorporated jump risk into a structural

credit risk model with coupon bonds, but his approach lacks sufficient analytic tractability

for our calibration calculation. Delianedis and Geske (2001) studied a close variant of the

the original Merton (1974) model to allow for jumps in the firm value process, but their

approach only applies to zero-coupon bonds.

Here, we propose a new structural credit risk model with a jump-diffusion asset value

process which allows for analytically tractable solutions for both bond prices and default

probabilities. The analytic tractability is made possible by the recent work of Kou and

Wang (2002) who solved for the probability distribution of the first passage time to flat

boundaries of a certain kind of double-exponential jump diffusion process.

In this new credit risk model, the firm value process is assumed to evolve, under the

real probability measure, according to

dVt

Vt−
= (πv + r − δ)dt + σvdW v

t + d

[
Nt∑

i=1

(Zi − 1)

]

− λξdt (6)

where the interest rate r, firm payout ratio δ, diffusion volatility σv are all constant, W v

is a standard Brownian motion, N is a Poisson process with a constant intensity λ > 0,

the Zi’s are i.i.d. random variables, and Y ≡ ln(Z1) has a double-exponential distribution
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with a density given by

fY (y) = puηue
−ηuy1{y≥0} + pdηde

ηdy1{y<0}. (7)

In equation (7), parameters ηu, ηd > 0 and pu, pd ≥ 0 are all constants, with pu + pd = 1.

The mean percentage jump size ξ is given by

ξ = E
[
eY − 1

]
=

puηu

ηu − 1
+

pdηd

ηd + 1
− 1. (8)

With such a jump-diffusion firm value process, there exist infinitely many risk neu-

tral probability measures under which the values of the firm’s asset, equity, and bond—

measured with a money market account value as the numeraire—are martingales. For now,

we will assume a simple risk-neutral process for the firm asset value. Later in the paper,

we will discuss why such a process is reasonable in an equilibrium context and sufficient

for our calibration approach, and establish the link between the real probability measure

and the risk neutral probability measure.

We assume that, under a risk-neutral measure, the firm’s asset value process evolves

according to

dVt

Vt−

= (r − δ)dt + σvdW
vQ
t + d




NQ

t∑

i=1

(
Z

Q
i − 1

)


− λQξQdt, (9)

where W vQ is a standard Brownian motion, NQ is a Poisson process with a constant

intensity λQ > 0, the Z
Q
i ’s are i.i.d. random variables, and Y Q ≡ ln(ZQ

1 ) has a double-

exponential distribution with a density given by

fY Q(y) = pQ
u ηQ

u e−ηQ
u y1{y≥0} + p

Q
d η

Q
d eηQ

d
y1{y<0}. (10)

In equation (10), parameters ηQ
u , η

Q
d > 0 and pQ

u , p
Q
d ≥ 0 are all constants, with pQ

u +p
Q
d = 1.

The mean percentage jump size ξQ (under the risk-neutral measure) is given by

ξQ = EQ
[
eY Q − 1

]
=

pQ
u ηQ

u

η
Q
u − 1

+
p

Q
d η

Q
d

η
Q
d + 1

− 1. (11)

Finally, the jump risk premium—the part of total risk premium πv which is due to jump

risk—is given by λξ − λQξQ.

For analytic tractability, the default trigger mechanism and default recovery rule are

assumed to be the same as those in the Longstaff-Schwartz model. The analytic solutions

for the bond price Pt,T and the real cumulative default probability Pr(t, T ) in this jump-

diffusion model are shown in the appendix.
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3 Calibration Method

The key idea behind our calibration approach is that each model (with the associated

choice of its parameters) that we use to calculate credit yield spreads should reflect the

severity of default risk—both the expected default frequency (EDF) and the average loss

rate given default—actually experienced by bondholders. So our calibration method should

be designed around the availability of default experience data.

Data on default probabilities and loss rates provided by the rating agencies (such as

Moody’s and Standard and Poor’s) are grouped by rating categories. To make use of such

data, we focus our analysis on all companies with the same credit rating at a given point

in time, rather than on any individual company. Specifically, we consider companies that

have the following credit ratings by Moody’s: Aaa, Aa, A, Baa, Ba, and B. Since we use

data from both Moody’s and Standard and Poor’s, we make a reasonable assumption that

the two rating systems have the following one-to-one mapping: Aaa = AAA, Aa = AA,

A = A, Baa = BBB, Ba = BB, B = B.

We use Moody’s as our source of data on historical default frequencies and loss rates

given default (see Keenan, Shtogrin, and Sobehart (1999)).7 Since both the credit rating

and the default recovery rate of a bond depend on the seniority of the bond, it is important

that the historical default frequency and the average default loss rate against which we

calibrate our models correspond to bonds with the same seniority. The historical default

probability estimates reported by Moody’s correspond to senior unsecured bonds.8 So for

the default recovery rate, we should also use that of the senior unsecured bonds, which

was reported to be 51.31%. Altman and Kishore (1996) used a different methodology and

arrived at similar numbers for the default recovery rate.

When we calibrate a structural model for a given credit rating, we imagine a repre-

sentative firm which has a senior unsecured bond outstanding, and assume that the bond

issued by our generic firm has the same probability of default as the historical probability

of default for bonds of the same seniority and credit rating. The recovery rate given default

for the bond is assumed to be the same as the historical default recovery rate for bonds of

the same seniority and credit rating.

Table 1 contains, among other things, the historical cumulative default probabilities

over various time horizons for bonds of each initial credit rating, and the average recovery

7See Carey and Hrycay (2001) for a careful discussion of issues on using credit rating to predict the

default probability.
8Of course, in arriving at such estimates, Moody’s needs to use a procedure to “back out” from each

subordinated and senior secured bond an implied senior rating. Such a procedure can create biases, which

is why we should take caution when using the reported default probabilities. Later in the paper, we will

do sensitivity analysis with our results by altering the estimates of historical default probabilities.
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rate given default, both from Moody’s.

It should be pointed out that our credit-rating-based calibration approach does not

actually require that we know the criteria used by the rating agencies. We just need to

assume that bonds with different credit ratings represent bonds with different levels of

credit risk and therefore different required credit spreads. Given that we consider only six

broad credit rating groups, this assumption is likely to hold.

So far we have emphasized the unique aspect of our calibration approach; that is, we

require that each model for each credit rating match the actual severity of default loss.

The rest of our calibration approach, however, is very similar to standard applications of

structural models employed by many previous studies, which we briefly outline below.

First, our models should also take into account balance sheet information for compa-

nies with different bond credit ratings. One important variable is the firm leverage ratio.

Standard and Poor’s (1999) provides the average leverage ratio for companies with bonds

of a given credit rating. In our approach, we calibrate our model for each credit rating to

this reported average leverage ratio, which is shown in column 2 of Table 1.

Secondly, we also calibrate our models to equity market data. Each structural model

generates predictions of not only bond prices, but also equity prices. Since the equity

market has higher liquidity and better data accuracy than the corporate bond market, it

is useful for us to utilize data in the equity market to calibrate our models.

One important equity variable that our models should be calibrated against is the equity

premium. This variable is important for our calibration approach because the predicted

bond default probability (in the real world as opposed to the risk-neutral world) depends on

the firm’s asset risk premium. Although a levered firm’s asset risk premium is not directly

observable, it is closely related to the firm’s equity premium. So calibrating to the equity

premium allows us to accurately model the firm’s asset risk premium. In contrast, standard

applications of structural models seldom use the equity premium because of their focus on

bond pricing, which can be carried out under the risk-neutral probability measure.

Since companies with different credit ratings may have different equity premia, we

need to calibrate our model with different equity premia for companies of different credit

ratings. Bhandari (1988) shows how cross-sectional equity returns are related to leverage

ratios. Using Bhandari’s estimates of regression coefficients, and noting that the average

equity premium and leverage ratio for S&P 500 companies are, respectively, roughly 6%

and 35%, we arrive at a set of estimates for the equity premium which varies with the

company’s credit rating. The results of such estimates are shown in column 3 of Table 1.

To summarize, for bonds of each credit rating, we need to calibrate structural models to

match four target quantities: the initial leverage ratio, the equity premium, the cumulative

default probability over a given future time horizon, and the recovery as a fraction of face
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value given default. Table 1 contains all such information.

Table 1 also shows the historical average yield spreads over Treasury bonds of similar

maturities by credit rating. Spreads on 10-year investment grade bonds are based on the

Lehman bond index data from 1973-1993. This time period is intentionally chosen to

be shorter by 5 years than the 1973-1998 time period for which Moody’s reports 10-year

default frequencies, so that both the historical yield spreads and the historical default

frequencies are likely to be recorded on the same sets of bonds. For 4-year investment

grade bonds, the historical yield spreads were based on those for noncallable bonds from

1985-1995 from Duffee (1998). To be consistent with the 10-year investment grade bonds

(which contain both callable and noncallable bonds), we have added back about 10 bp of

call-option spreads based on the work by Crabbe (1991). Historical junk bond yield spreads

are harder to estimate. Here, we rely on estimates in Caouette, Altman, and Narayanan

(1998) for both 4-year and 10-year maturities.

These estimates of historical corporate bond average yield spreads are, of course, not

precise. But readers should not be overly concerned with this issue since our calibration

approach does not rely on these yield spread estimates as input parameters—they only

serve as references for comparison with our calculated credit yield spreads.

Readers may notice that we choose not to require that our models match the observed

equity volatility, a key variable that standard applications of structural models normally try

to match. This choice, however, does not represent a difference between our approach with

the standard calibration approach. Our approach only emphasizes the need to match his-

torically observed default loss experience, but it does not at all rule out matching variables

such as equity volatility.

Our choice to not match equity volatility for bonds of each credit rating is made for a

few simple reasons. First, we do not have ready access to estimates of equity volatilities by

company credit ratings. Secondly, as many studies since Shiller (1981) have shown, firms’

equity return volatilities may be too high to be justified by the fluctuation of the firms’

fundamental asset values. To the extent that the default risk of a bond is driven primarily

by the potential deterioration of the firm’s fundamental asset value, the observed volatility

of the firm’s equity return may not accurately represent the potential default loss of the

firm’s corporate bond. Given that we already require that our models match historical

default probabilities, we do not deem it necessary for us to match equity volatility as well.

In the end, the choice to not match equity volatility does not have a significant impact

on our quantitative results. Later in the paper, we will conduct sensitivity analysis which

shows that our results would not have changed much had we calibrated our models to

equity volatility.
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We now turn to structural models and talk about how we choose our model parameters.

Model Calibration

To specify any structural model quantitatively, we need to choose the following set of

parameters (or processes when the variable is stochastic): the initial firm value V0 (as a

multiple of the total face value of bonds outstanding), the interest rate r, the asset risk

premium πv, the asset payout rate δ, the asset volatility σv, the jump process parameters

in the case when the value process has a jump component, the default boundary V ∗, and

the default recovery rule.

Here is how we choose our model parameters. We choose r according to its historical

average (for the constant interest rate model) or according to a fitted interest rate model

(for stochastic interest rate processes). We choose δ to be consistent with the historical

average asset payout rate. For some models, V ∗ is determined endogenously. For other

models, we set V ∗ to be roughly the average recovery amount for bonds plus any bankruptcy

costs and costs due to the violation of absolute priority rule. Specific numerical choices of

these parameters and processes, as well as parameters for the jump component of the asset

value process, will be discussed in the next section when we present results.

Four important parameters, V0, πv, σv, and the default recovery rate, are still to be

determined. For each model calibrated to each credit rating, we choose these four parame-

ters such that the model matches the four target parameters: the initial leverage ratio, the

equity premium, the cumulative default probability, and the recovery rate given default.

Again, models with jumps in the firm value process require special attention, which we will

address later on.

In this calibration approach, we need to know formulas for bond prices and default

probabilities. Such formulas for all models considered in this paper can be found in section 2

or the appendix.

Before we present results and discussions, we want to point out that in our calibration

approach, as we average over historical time periods as well as over companies with bonds

of similar credit ratings, we ignore the cyclicality and predictability of default rates. Ideally,

one would like to calibrate our models for each time period separately so that the models

are consistent with each time period’s expected default probability. But given the limited

historical data on defaults and given the noisy nature of default rates over any short period

of time, it is very difficult to have any precise estimate of the expected default probability

if we limit ourselves to a short time period.
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4 Results and Discussions

In this section, we present and discuss our calibration results from various structural models.

We organize our discussions according to the economic considerations introduced by these

models.

We choose the Longstaff-Schwartz model to present our base case around which we

introduce different economic considerations. The analytic flexibility of, and the ease of

extensions from, the LS model allow us to analyze the effects of stochastic interest rates,

mean-reverting leverage ratios, and time-varying and predictable equity risk premia on our

calibration results.

4.1 The Base Case

Our “base case” uses the LS model with a constant interest rate. Stochastic interest

rates will be considered later. The base case also requires a full set of parameters as inputs.

We now specify the choice of the parameters.

First, we need to choose target parameters for each credit rating. For the base case, the

target initial leverage ratio (defined as the ratio of the market value of debt to the market

value of firm asset), the target expected equity premium, the target cumulative default

probability, and the target default recovery rate are all chosen according to Table 1.

Second, we need to choose parameters for the credit risk models. Four model parameters—

the initial firm value V0, the asset risk premium πv, the asset volatility σv, and the default

recovery rate w—will be determined by calibration to match the above target parameters.

This leaves three parameters to be determined: the asset payout rate, the interest rate,

and the default boundary.

For the asset payout rate, we use δ = 6% for all firms. In principle, this payout rate

should represent the average total net annual payments to holders of all of the firm’s

securities (which includes all coupons, principals, and dividends, plus proceeds from all

security issuances, minus all share repurchases) as a fraction of the firm’s asset value. As

a rough estimate, we can take the weighted averages between the average dividend yields

(which is close to 4% according to Ibbotson Associates (2002)) and the average historical

coupon rate (which is close to 9% during 1973-1998, the time period for which we calibrate

our models), with weights given by the average leverage ratio of all firms (which is close to

35% for S&P 500 firms). This rough estimate gives a payout rate that is close to 6%.

We do not assume different asset payout rates for firms with different credit ratings.

Firms with junk bonds may have more debt and higher coupon rates than firms with

investment-grade bonds, but they are likely to pay much less dividends. In any case, we

will show later that our calibration results are not sensitive to this choice.
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For the interest rate, we will choose a continuously compounded constant rate of r = 8%.

This is close to the historical average Treasury rates during 1973-1998.

The last parameter we need to choose is the boundary of default. In the original LS

model, default is assumed to occur when the firm value falls to the bond face value. This

assumption, however, may not be very reasonable given that bondholders on average recover

only about 51% of the face value given default; after all, it is difficult to believe that 49% of

the firm value is lost due to bankruptcy costs or the violation of absolute priority rule. So

for our base case, we assume a lower default boundary V ∗ at 60% of the bond face value.9

Upon default, bondholders recover about 51% of the face value, which is about 85% of

the firm value at default. The remaining 15% of the firm value lost during the default

process is consistent with previous findings that bankruptcy costs are about 10-20% of firm

value (see, for example, Andrade and Kaplan (1998)) and that the violation of absolute

priority rule represents only a small fraction of the firm’s value. Later on in the paper,

we will conduct sensitivity analysis to show that the calculated credit yield spreads in our

calibration approach are not very sensitive to this choice of the default boundary.

Third, we need to choose the maturities and coupon rates for corporate bonds. To

study bonds with a range of maturities, we consider bonds with both 4-year and 10-year

maturities. Occasionally, we also consider 1-year maturity bonds to highlight our results

for short-term bonds.

We choose the coupon rate to be 8.162%, which is the par coupon rate for riskfree bonds

with semi-annual coupon payments when the continuously compounded interest rate is 8%.

One obvious alternative is to choose a different coupon rate for bonds of each credit rating

so that the corporate bond is initially priced at par. We made our choice so that the LS

default recovery rule matches the way default recovery data is recorded by Moody’s. While

Moody’s reports default recovery rate as a fraction of the face value received on the day of

default, the LS model assumes that upon default, each holder of a coupon bond is assumed

to continue to receive with certainty an exogenously specified fraction of all future payments

according to the original time schedule. When we choose the coupon rate to be the par

coupon rate for an otherwise riskfree bond, the bondholder in the LS model effectively

receives the specified fraction of the face value, in terms of market value, on the day of

default. This makes it possible for us to calibrate the LS model to Moody’s default data.

To correct for the fact that this choice of coupon rate may underestimate the coupon rate

for junk bonds, we calculate all leverage ratios by using the market value, rather than the

9In order to make the assumption that the default boundary in the LS model can be below the bond

face value F , we need to reinterpret the model and let F denote the total amount of liabilities. If the firm

has only one corporate bond maturing in 10 years, then the default boundary has to be close to the face

value near bond maturity.
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face value, of bonds.

With the above parameter choices and coupon bond terms, we can now calibrate the

1-factor LS model for our base case. The calibration results, as well as the calculated

credit yield spreads from such calibrated models, are shown in Table 2. Figure 2 also

illustrates some of the main results for 10-year bonds. In Table 2, we have three panels,

corresponding to 10-year, 4-year, and 1-year maturities. For each maturity in a given panel,

and for a given credit rating corresponding to each row, the table shows the target initial

leverage ratio (column 2), the target equity premium (column 3), the target cumulative

default probability up until maturity (column 4), the implied asset volatility (column 5) and

the asset risk premium (column 6) that allow the calibrated model to match all targets,

the calculated credit yield spread (column 7) from the calibrated model, the historical

average yield spread (column 8), and our calculated credit yield spread as a percentage of

the historical average yield spread. For 1-year maturity bonds, we cannot find estimates

of corporate-Treasury yield spreads as corporate bonds are rarely traded close to their

maturities.

A few conclusions can be reached based on our base case results. First, for investment

grade bonds (i.e., those with a credit rating not lower than Baa) of all maturities, credit

risk accounts for only a small fraction of the observed corporate-Treasury yield spreads,

and the fraction is typically smaller than 20% except for 10-year Baa-rated bonds. Second,

credit risk accounts for a much larger fraction of the observed corporate-Treasury yield

spreads for junk bonds than for investment grade bonds. Third, among investment grade

bonds, the shorter the maturity, the smaller the fraction of the observed yield spreads can

be explained by credit risk.10

For the short end of the maturity spectrum (with about one year to maturity), according

to the base case calculation, credit risk accounts for only a tiny portion of the observed

yield spreads for investment grade bonds. In some sense, this observation is not new; many

previous studies have shown that structural models with a diffusion-type firm value process

always generate a very small credit yield spread for short maturities. Most researchers

interpret this as evidence that diffusion-type credit risk models underestimate credit risk for

short-maturity bonds. Proposed theoretical improvements include incomplete accounting

information (Duffie and Lando (2001)) and firm value processes with jumps (Zhou (2001)

10We do not explore here what explains the remainder of the corporate yield spreads. But these results

seem to be consistent with the hypothesis that liquidity premia account for much of the remainder of

the corporate yield spreads. Under this hypothesis, credit risk should account for smaller fractions of

yield spreads for bonds of higher credit quality because the liquidity premium is less sensitive to credit

quality than credit spread is; and credit risk should account for smaller fractions of observed yield spreads

for investment-grade bonds of shorter maturities because liquidity premia should be higher for such bonds

partly due to the fact that trading costs for such bonds have to be amortized over a shorter holding horizon.
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and Delianedis and Geske (2001)).

In this paper, however, we take a different view: even after incorporating jump risk,

credit risk may still only account for a very small fraction of the yield spreads for short-

term investment grade bonds simply because such bonds rarely default within a short time

interval. Structural models that obtain high credit yield spreads by introducing jumps

into the firm value process may have done so by predicting counterfactually high default

probabilities over short time intervals. Later in the paper, we will provide some evidence

of this alternative view by studying a structural model with a jump diffusion firm value

process.

For investment grade bonds with medium to long maturities, there is much less consen-

sus on how much of the observed yield spreads can be explained by credit risk. So in the

remainder of the paper, we mostly focus on 4-year and 10-year corporate bonds.

For reasons discussed previously, we do not calibrate our models to match equity volatil-

ity. But the implied asset volatilities generated by our calibration for the base case are

broadly consistent with empirically estimated levels of total risk of individual firms.11

One important question is whether our results are mostly driven by the fact the Trea-

sury yields may not be “clean” riskfree interest rates. A widely held belief is that the term

swap rates may be better riskfree rates. Although one can argue that swap rates themselves

contain some credit spreads, to make sure that our results are not entirely driven by our

choice of Treasury yields as riskfree reference rates for corporate spreads, we also did our

calculations with the corporate-Treasury yield spreads replaced by the spreads between

corporate bonds and swap rates of comparable maturities. We find that our main qualita-

tive conclusions remain the same for corporate bonds below the Aaa rating. For example,

for 10-year maturities, the average swap spreads during 1988-1995 is 52 basis points. Using

the swap rates as riskfree rates, according to our base case calculation, credit risk accounts

for, respectively, 39%, 34%, 41%, 73%, and 93% of the spreads of corporate yields over

swap rates for bonds rated Aa, A, Baa, Ba, and B.

The base case is our starting point of analysis. It is important to know whether models

that introduce other economic considerations would change our results, and whether our

results are sensitive to the choice of parameters. We take up these issues next.

Specifically, we will ask whether our results will be significantly different when we con-

sider that: (i) interest rates may be stochastic (the Longstaff-Schwartz two-factor model);

11Goyal and Santa-Clara (2002), for example, find that average equity volatility over the last few decades

is about 55%. This may be large compared to our implied asset volatility numbers, even after adjusting

for the leverage effect. One reason is that companies with investment-grade bonds may have lower asset

and equity volatilities. Another reason is probably due to the excess volatility in the equity market (see,

for example, Shiller (1981)).
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(ii) the default boundary should be endogenously determined as firms issue equity to

avoid default (Leland-Toft); (iii) firms may default strategically to extract concessions from

bondholders (Anderson-Sundaresan, Anderson-Sundaresan-Typhon, and Mella-Barral and

Perraudin); (iv) firms adjust their leverage ratios, making them mean-reverting (Collin-

Dufresne and Goldstein). We will show that all of these models generate very similar

results on credit yield spreads under our calibration approach.

In order to gain a better understanding of credit risk premia, we next study models that

incorporate higher risk premia for states of the economy with a higher default likelihood.

We introduce two additional models to explore this issue: one with a counter-cyclical

market risk premium, and one with a jump-diffusion firm value process.

In addition, we also conduct sensitivity analysis with different parameter choices.

As we will show below, the quantitative results obtained in our base case remain very

robust when we consider the above economic assumptions about credit risk valuation, as

long as we use empirically reasonable model parameters.

As we go through various models, including many existing ones, please bear in mind that

we are merely focusing on the quantitative question of how much of the observed corporate

yield spread is due to credit risk. Each of these models is a nice extension of the Merton

(1974) credit risk model within the structural approach that studies how certain realistic

economic considerations would affect credit risk valuation. We are simply applying these

models—together with the idea that each of them should match actual historical default

loss experience—to estimate credit yield spreads for corporate bonds. Even though we may

reach different quantitative conclusions than the original authors about the level of credit

risk, we do not in any way question the validity of these models.

4.3 Stochastic Interest Rates

One realistic consideration ignored in the base case is that the interest rate is stochastic.

To study the effect of stochastic interest rates on our calculations, we calibrate the original

two-factor LS model with a stochastic interest rate that is given by the Vasicek (1977)

model (see (15) and (16)). The following typical parameters for the Vasicek model are

chosen

κr = κ̄r = 0.226; θ = 11.3%; θ̄ = 6.2%; σr = 4.68%

The correlation coefficient between the interest rate process and the firm value process is

assumed to be ρrv = −0.25, following LS. The initial interest rate at time zero is set to be

8%.

Table 3 presents the results of this calculation for 4-year and 10-year bonds. The

results show that all of our conclusions in the base case remain true here. In particular, the
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calculated credit yield spreads for all credit ratings under the assumption of a stochastic

interest rate are even smaller than those in the base case.

The reason that stochastic interest rates have a negative impact on our calculated

credit spread is as follows. First, observe that the long-term mean interest rate in the risk

neutral measure is always higher than in the real probability measure. In our example

above, θ = 11.3% > θ̄ = 6.2%. This is not unique to the Vasicek model — any term

structure model that tries to explain the positive premium for holding long-term bonds

inevitably assumes that the long-term mean for the interest rate process under the risk-

neutral measure is higher than under the real probability measure so that long-term bond

prices are “fair” relative to short-term bonds.

This observation allows us to understand why stochastic interest rates reduce the credit

spread calculated in our calibration approach. Note that, holding other model parameters

constant, a higher interest rate leads to a lower default probability, as the firm value

has a higher drift rate. If the interest rate is constant, then the interest rates under

both the real and risk-neutral measures are the same constant. But a stochastic interest

rate (appropriately calibrated to term structure data) generates a higher long-term mean

under the risk-neutral measure than under the real measure, and this drives the risk-

neutral default probability lower relative to the real default probability. In our approach,

since our model is always calibrated to generate the same empirically observed real default

probability, stochastic interest rates drive down the risk neutral probability of default as

well as the calculated credit spread.

At a more basic level, medium- and long-term corporate bond yield spreads are mea-

sured against Treasury bonds of similar maturities, but equity premia tend to be measured

against short-term Treasury yields. When we use a stochastic interest rate process that

matches the fact that long term Treasury bonds generate higher average returns than short-

term Treasury securities, the effective equity—and thus asset—risk premia measured over

medium- and long-term Treasury securities are smaller, which results in lower credit risk

premia for medium- and long-term corporate bonds as well.

4.4 Endogenous Default Boundary Based On Zero Equity Value

One issue with the LS model is that the default boundary is specified exogenously.

Ideally, we would like to know whether an endogenously derived default boundary, by im-

posing more structure on the model, may have a large quantitative effect on our calculated

credit spread. Unfortunately, not many models of this type are analytically tractable for

the purpose of calibration. Two groups of structural models have endogenously derived

default boundaries under some restrictive simplifying assumptions. The first group, by

Black-Cox (1976), Leland (1994), and Leland-Toft (1996), assumes that firms delay default
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as much as possible by issuing equity to service debt coupon payments, and default occurs

when the equity value is zero. We consider this group of models here. The second group

incorporates strategic default, which we will take up next.

The calibration approach for the Leland-Toft (LT) model and for all parameter choices

are the same as in the base case, except for differences in bond maturity and in modeling.

Results are shown in Table 4. We only show results for 10-year bonds here because the

version of LT model we calibrate here assumes infinite maturity.

At first glance, the LT model seems to generate higher credit spreads for investment-

grade bonds than the LS model did in our base case. This, however, is due to the fact that

the LT model considered here has a perpetual bond, which, for investment grades, should

have a higher credit spread than a 10-year bond. The only other difference between the

LT and the LS models, given that we have calibrated the two models in the same way,

is in their default boundaries—the endogenously determined default boundary in the LT

model in general differs from the exogenously specified default boundary in the LS model.

This, however, cannot explain the difference in credit spreads as our calculated credit yield

spreads are not sensitive to the choice of default boundaries.

To check that the higher investment-grade credit spread calculated in the LT model is

indeed due to the infinite maturity of the perpetual bonds in LT, we take the exact same

asset risk premium, default boundary, and asset volatility which the LT model generated in

Table 4 for Aaa- and Aa-rated bonds, and then plug these parameters into the Longstaff-

Schwartz model to calculate the credit yield spreads of a 10-year bond. Such calculation

shows a spread of only 8.9 bp and 12.4 bp, respectively, for Aaa- and Aa-rated 10-year

bonds, which are much lower than those given by the LT model. Note that this is a precise

comparison as both models use the same underlying firm value process and our calibration

ensured that all other parameters are identical.

One nice feature of the LT model is, as the calibration results show, that it does endoge-

nously generate default boundaries that are much lower than the bond face value. This

is reasonably consistent with the fact that historical average default recovery rate is only

about 51% of the bond face value even though bankruptcy costs should be smaller than

20%. Occasionally, however, the default boundary can be even lower than 51% of the face

value, making it impossible for the model to match the 51% average recovery rate. In such

cases, we cap the recovery to be whatever the firm value is at default.

4.5 Strategic Default

Another set of models of credit risk with endogenous default boundaries are given by

Anderson-Sundaresan (1996), Anderson-Sundaresan-Tychon (1996), and Mella-Barral and

Perraudin (1997) (collectively AST-MBP). While the LT model assumes that firms try
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to delay default as much as they can by issuing equity to service debt if necessary, the

AST-MBP approach assumes that firms default strategically to extract concessions from

bondholders whenever possible.

One of the important conclusions from the strategic default approach in AST-MBP is

that firms are more likely to default than suggested by many other structural models. As a

result, AST-MBP showed that strategic default can potentially do a better job at explaining

the empirically observed high corporate-Treasury yield spreads for investment-grade bonds.

Our calibration calculation showed, however, that even after consideration of strategic

default, credit risk still accounts for a small fraction of yield spreads for high quality bonds.

Table 5 shows the results of our calibration.12 Again, we only show results for 10-year bonds

because the AST-MBP model we calibrated here assumes infinite maturity. As in the LT

model, at first glance, the AST-MBP model seems to generate much higher credit spreads

for investment-grade bonds than the LS model did in our base case. This, however, is again

due to the fact that the AST-MBP model considered here has a perpetual bond, which, for

investment grades, should have a higher credit spread than a 10-year bond. To check that

this is indeed the case, we take the exact same asset risk premium, default boundary, and

asset volatility which the AST-MBP model generated in Table 6 for Aaa-rated bond, and

then plug these parameters into the Longstaff-Schwartz model to calculate the credit yield

spread of a 10-year bond. Such calculation shows a spread of only 12.8 bp, which is much

lower than given by the AST-MBP model. Again, note that this is a precise comparison as

both models use the same underlying firm value process and our calibration ensured that

all other parameters are identical.

Why do our quantitative conclusions remain robust under strategic default considera-

tions? Under strategic defaults, credit spreads can be higher because equity holders are

more likely to renegotiate with bondholders — out of bankruptcy courts — to gain conces-

sions from bondholders. But since any such renegotiation is treated as “default” by rating

agencies (such as Moody’s), we need to ask if such models can generate high credit spreads

while being consistent with the observed low default frequency for investment-grade bonds.

Indeed, after calibrating such models against the historically observed default frequency,

we find that credit risk still accounts for only a small fraction of the observed yield spreads

for investment-grade bonds.

Comparing the AST-MBP model with the LT model, we note that endogenous defaults

in strategic models tend to occur at firm values that are above the face value of the debt.

This may make it difficult to understand why bondholders receive, on average, only roughly

51% of the face value given default while bankruptcy costs are smaller than 20% of the

12We do not show results for junk bonds because we cannot find a set of parameters that satisfy our

calibration requirements.
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firm asset value. So it is probably more reasonable to take the view that strategic default

models represent a subset of firms for which strategic default is a reasonable approximation

of reality.

4.6 Firms with Mean-Reverting Leverage Ratio

Collin-Dufresne and Goldstein (2001) (CDG) proposed a model that incorporates the

idea that firms may adjust their outstanding debt levels in response to changes in firm

value, which makes the stochastic leverage ratio mean-reverting. They argue that, under

such considerations, the calculated credit yield spreads on long-term investment grade

bonds are comparable to those observed in corporate bond data, since these firms tend to

increase their leverage ratio over time by increasing debt issuance. Ericsson and Reneby

(2002) reached similar conclusions under similar assumptions.

We apply our calibration approach to the CDG model. The results are shown in Table 6.

For parameters in the CDG model (see (22) and (23)), we choose the mean-reversion

coefficient κl = 0.2, and the long-term average leverage ratio ¯̀= 38%. These numbers are

similar to those chosen in CDG, and also comparable to those found in empirical studies

(see Fama and French (2002a)).

The results in Table 6 show that, the calculated credit yield spreads in the CDG model

under our calibration approach are very similar to the results in our base case. The higher

credit yield spread generated in the original CDG approach is due to the higher default

probability driven by the assumption that firms with high credit quality may increase their

debt outstanding, rather than due to a higher credit risk premium. Once we force the model

to match the empirically observed default frequency, we are still left with the conclusion

that, according to the CDG model, credit risk accounts for only a small portion of the

observed corporate-Treasury yield spreads on long-term investment grade bonds.

4.7 Discussions and Further Directions

The above structural models of credit risk have generated very similar credit yield

spreads. Despite the fact that these models made very different economic assumptions,

their predicted credit risk premia do not differ much once each of them is calibrated to

match the same historical default loss experience. So it might be useful for us to ask

whether going beyond the common features of these models can allow us to capture some

key economic reasons for why credit risk premia should be very high. Indeed, by deviating

from two common assumptions in the above models—a constant asset risk premium13 and

13Strictly speaking, however, this is an assumption that we made so far. The above models mostly

focused on the pricing of corporate bonds under the risk-neutral probability measure. Although these
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a one-factor diffusion firm value process—we can capture some important considerations

that could lead to very high credit risk premia.

Intuitively, one potentially important cause of high credit risk premia is the existence

of certain states which are associated with both high default probabilities and high market

risk premia. To make this intuition precise, we consider two mechanisms through which

the existence of such states can lead to high credit risk premia.

The first mechanism is that, at some states with high default risk, the market risk premia

happen to be abnormally high. An example of such states is the bottoms of business cycles.

Many researchers have shown that the aggregate market risk premium is counter-cyclical

(see, for example, Campbell, Lo, and MacKinlay (1997)), and that business cycle variables

such as the market dividend yield can help predict the aggregate equity premium. Given

that the level of credit risk is also counter-cyclical, the market risk premium tends to be

high when the level of credit risk is also high. So a model that captures such time variation

might be able to predict a high credit risk premium. We will consider such a model below.

The second mechanism is that the stochastic discount factors (or investors’ marginal

utilities) for certain future states (with high default risk) can be “abnormally high,” in a

sense to be made precise soon. The structural models studied so far—all with one-factor

diffusion firm asset value processes—have certainly allowed for the existence of future states

with both high default risks and high stochastic discount factors; they are future states with

severe negative shocks on firms’ asset values. Our second mechanism, however, assumes that

there exist certain future states with high default risks for which the stochastic discount

factors are much higher than those suggested by models with one-factor diffusion asset

value processes.

A simple example of such states is large downward jumps in asset values, which are

associated with high default risks. The market may view jumps in asset values as particu-

larly risky and require high stochastic discount factors (or high marginal utilities) for such

jump states. Considerations of such special states can potentially lead to very high credit

risk premia. To capture such effects, we implement a jump-diffusion structural credit risk

model below.

Note that the second mechanism is distinctly different from the first mechanism. In

fact, in our model with jumps in asset values, the jumps are unpredictable and there is no

time variation in market risk premia.

Another class of credit risk models that may be worth exploring are ones in which the

firm value process has stochastic volatilities. Stochastic asset volatilities may lead to high

credit risk premia through both of the above mechanisms. If states with high asset volatil-

models—at least in their original versions—typically make the explicit assumption of a constant asset risk

premium, their validity extends to time-varying risk premia as well.
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ities have high market risk premia, then the first mechanism can work. If there exist future

regimes (or states) with high volatilities that have very high stochastic discount factors (be-

cause investors are particularly concerned about such states), then the second mechanism

can work. But because of lack of tractability of credit risk models with stochastic volatili-

ties, particularly of default probability calculation for coupon bonds, we leave a full study of

this case for future research. Fortunately, however, the effects of stochastic asset volatilities

through both mechanisms can be partially captured by our representative models for both

mechanisms. The effects of stochastic asset volatilities through the first mechanism can

be partially captured by a time-varying market risk premium with the stochastic volatility

as the predicting variable, and the effects through the second mechanism can be partially

captured by our jump-diffusion model, since jumps, after all, can be thought of as very

short-lived regimes with extremely high volatilities.

We emphasize that each of the above economic considerations of credit risk could ex-

plain all of the observed corporate-Treasury yield spread if we make certain parameter

assumptions. The key, however, is whether they can do so under empirically reasonable

parameter choices.

4.8 A Counter-Cyclical Risk Premium

We use a model with a counter-cyclical market risk premium to capture our first mecha-

nism. A counter-cyclical risk premium should, at least qualitatively, lead to a higher credit

yield spread under our calibration approach. A firm’s asset return is typically positively

correlated with the aggregate market return. This implies that, if a firm’s asset return

experiences a negative shock, then it is more likely that the subsequent risk premium is

higher (for both the aggregate market and individual firms’ asset returns). This results

in a lower real default probability with a counter-cyclical asset risk premium than with a

constant asset risk premium, holding the average asset risk premium the same. But since

bond prices will not be affected by changes in the asset risk premium due to risk-neutral

pricing, the net effect of a counter-cyclical asset risk premium is that corporate bonds can

potentially have low prices (and high yields) while experiencing low default probabilities.

To investigate whether this effect can make a significant quantitative difference in our

calibration calculation under empirically reasonable parameter assumptions, we apply our

approach to the model with a time-varying asset risk premium introduced in section 2.

We first need to assign numerical values for parameters κπ, π̄v, and σπ for the asset risk

premium process in (5). We start with the following aggregate equity market risk premium

process as calibrated in Campbell and Viceira (1999) for annual S&P 500 data from 1890

to 1993:

dπM
t = κM(π̄M − πM

t ) dt + σM dW πM

t , (12)
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where

κM = 0.202; π̄M = 4.165%; σM = 3.10%.

The correlation between the market risk premium process with the market return process

is ρπM = −0.701. To come up with a model for our individual firm asset risk premium, we

combine the Campbell-Viceira calibration with the CAPM model,

Ri,t = rf + βi (RM,t − rf ) + εi,t,

where εi,t represents firm i’s idiosyncratic risk that is uncorrelated with all other variables.

The final parameter choices for the individual firm asset risk premium process are

κπ = 0.202; π̄v = 4.165%; σπ = 3.10%

where we have assumed that the β for a typical firm’s asset is one in arriving at the estimate

for π̄v. The correlation between a firm’s asset risk premium and its asset return process is

given by

ρπV = ρπM × ρvM ≈ −0.701 × 0.5 = −0.351

where we have used the fact that a typical firm’s asset return correlation with the market

return is about 0.5.

With these choices, the results of our calibration calculation are shown in Table 7. As

expected, the predictability of the equity risk premium does produce a higher credit yield

spread, but the quantitative effect is limited — credit risk still only accounts for a small

fraction of the observed yield spread for investment-grade bonds, according to the model.

Of course, the model here can generate a much higher credit yield spread than that

shown in Table 7 if we assume a much stronger predictable variation in the market risk

premium. But since there is empirical support for only a limited amount of predictability

of market risk premium, our main conclusions continue to hold even after we account for a

counter-cyclical market risk premium.

We should also consider the possibility that individual firm asset returns may be time-

varying and predictable, and that such time variation could generate a higher average

credit risk premium, even though time variation in the aggregate market risk premium is

not strong enough. For this view to be valid, however, we need empirical evidence that

individual firms with high default risk have high asset risk premia. But so far, there is not

enough empirical evidence to support this view. On the contrary, Dichev (1998) showed

that equities of firms with high bankruptcy risk actually earn significantly lower returns

than average.

4.9 Effects of Risky Jumps in the Firm Value Process

To capture the mechanism that investors may be particularly concerned about certain
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states with high default risk, over and above what a diffusion-type model would suggest,

we study a new structural credit risk model with a jump-diffusion asset value process. This

model, introduced in section 2, allows for analytically tractable calculations for both prices

and cumulative default probabilities of coupon bonds. We use this model to understand

the effects on the credit risk premium of high default risk states with high equilibrium

stochastic discount factors.

We calibrate the jump-diffusion model as follows. First, we need to calibrate the jump

process for firm asset value returns under the real probability measure. Given that no

study has estimated the jump components for asset returns of individual firms with bonds

of a given credit rating, we rely on estimation results from S&P 500 index data, and choose

the following parameters which are roughly consistent with the recent study by Anderson,

Benzoni, and Lund (2001):

λ = 3; pu = pd =
1

2
; ηu = ηd = 30.

Individual firms’ asset return processes may not be described by this set of parameters

which are based on S&P 500 data. But fortunately, our calculation shows—as intuition

would suggest—that idiosyncratic jumps that (according to traditional theory) do not

require a risk premium would not affect our calculated credit risk premium.14 So it is

reasonable for us to only focus on those individual firm asset value jumps that are part of

systematic jumps in the market, which can be represented by S&P 500 jumps.

We also need to calibrate the firm value process under the risk-neutral probability

measure. For the real to risk-neutral probability measure transformation, the diffusion

part can be treated as usual, but the jump component needs special attention. Given

the double-exponential jump-diffusion firm value process, the market for state contingent

claims on the firm asset value is not dynamically complete, leading to infinitely many

possible jump processes under the risk-neutral measure. So we need to go beyond purely

arbitrage-based methods, and make equilibrium-based assumptions.

Guided by equilibrium considerations and restricted by analytic tractability, we assume

the following simple one-parameter form of the transformation between the real and risk-

neutral measure for the jump process:

λQ = λE
(
Z

−γ
i

)
; fQ(z) =

z−γ

E
(
Z

−γ
i

)f(z) (13)

where fQ(·) and where f(·) denote, respectively, the density function of the jump size distri-

bution under the risk-neutral and real measures. This transformation is partly motivated

14Of course, idiosyncratic jumps certainly affect real default probabilities, but recall that our calibration

approach forces the model (with both diffusion and jump risk) to match the historical default frequency

anyway, so that we are focusing on the effect of jumps on the credit risk premium.
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by analytic tractability; it is one of the few transformations that would allow the risk-

neutral jump process to also have the double-exponential distribution (see Kou (2002)),

with the following parameters:

ηQ
u = ηu + γ; η

Q
d = ηd − γ; pQ

u =

puηu

ηu+γ
puηu

ηu+γ
+ pdηd

ηd−γ

(14)

In addition, this transformation also has an appealing equilibrium interpretation. It is

supported by a Lucas-type equilibrium in which the representative agent with a constant

relative risk aversion of γ holds the asset in equilibrium and consumes a constant fraction

of his holdings each time period (see Kou (2002)). As a result, the marginal utility for

downward jumps is higher than that for upward jumps.

The calibration of the transformation parameter γ is done by assigning an empirically

reasonable number to the jump risk premium, which is given by λξ − λQξQ. In order

to dramatize the potential effects of jumps on the credit risk premium, we choose our

transformation parameter γ under the assumption that all of the firm’s asset risk premium

is due to its systematic jump risk. This could help strengthen our conclusion in the event

that we find small credit risk premia and small credit risk spreads.

The rest of our calibration proceeds just as in the base case. The results are shown in

Table 8. Our results show that incorporating jumps does not significantly change our base

case conclusion. Credit risk still accounts for a small fraction of observed yield spreads for

investment grade bonds of all maturities, but a much larger fraction for junk bonds.

Interestingly, for short maturities (such as one year), even with jump risk explicitly

considered, credit risk still accounts for only a small fraction of the observed yield spreads

for investment grade bonds. This result casts doubt on the view that jump risk may allow

structural models to explain the observed short-term high quality corporate bond yield

spreads. Jumps in asset values lead to higher credit yield spreads through higher default

probabilities. But once we calibrate such models to match the very small default frequency

observed for high credit quality bonds over short intervals, we show that credit risk due to

asset value jumps still account for a small fraction of the observed yield spreads.

As we emphasized before, some structural models of credit risk can, at least in the-

ory, explain all of the observed corporate-Treasury yield spreads under certain parameter

choices, even for investment grade bonds. The key is whether such parameter choices can

be supported by empirical evidence. The jump-diffusion model here provides an example of

such models. We will now show that this model can indeed explain all of the observed cor-

porate yield spreads under certain parameter choices, but such required parameter choices

are not realistic.

We present results for our jump-diffusion model under one such extreme set of parameter

choices in Table 9, which indeed explain roughly all of the observed corporate yield spreads.
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The parameters chosen are

λ = 0.1; pu = pd =
1

2
; ηu = ηd = 5.

This set of parameters is, however, unreasonable, for two reasons. First, it makes a drastic

assumption about the market risk premium. Specifically, it assumes that all of the observed

aggregate market equity risk premium is due to those rare events during which the values

of assets — not equities — of all firms would drop by an average of 20%, and that these

rare events occur with an average frequency of once every 20 years (given that the jump

intensity is once per 10 years and that jumps go up and down with equal probabilities).

Secondly, it assumes that the observed corporate bond default events are extremely highly

clustered during such rare jump events. Corporate default do tend to cluster around bad

economic times, but not nearly as much as such extreme parameters would imply.

It should be pointed out, however, that we have not considered all of the modeling pos-

sibilities that could generate high credit risk premia by deviating from one-factor diffusion

firm asset value processes. These possibilities include multi-factor models for firm value

processes, such as models with stochastic volatilities (see section 4.7 for a discussion on

such models), as well as other transformations between the real and risk-neutral probability

measures. It would be interesting to extend our approach to more sophisticated models in

future research.

4.10 Sensitivity Analysis of the Parameter Choices

Having shown that our conclusions are fairly robust to many different economic consid-

erations, we now ask whether our conclusions are sensitive to the choices of our parameters.

We start from our base case, and then change various parameter choices. To be conservative,

we give more considerations to parameter choices that would lead to a higher calculated

credit yield spread.

Table 10 summarizes all results of sensitivity analyses. The numbers shown are the

percentages of the observed yield spreads that can be explained by credit risk under various

parameter choices. Column 2 is the base case, and other columns are results from varying

different parameters.

Equity premium. In our calibration approach, a higher equity premium, which implies a

higher asset risk premium, should lead to a higher credit risk premium and a higher credit

yield spread. Start from the base case, we add 2% to the equity premium for firms of each

credit rating. Given that some researchers believe that the true equity premium may be

smaller than 6% (see Fama and French (2002b)), and that the realized equity premium
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during 1973-1998 is also less than 7% for firms with average leverage ratios,15 this choice of

a higher equity premium is conservative enough. Results (in column 3 of Table 10) indicate

that the calculated credit yield spread is indeed rather sensitive to the equity premium,

but the total quantitative effect is still small.

Default boundaries. Throughout the paper, we have assumed that a firm defaults when

its asset value hits 60% of the total face value of bonds outstanding. This assumption is

made to be consistent with the facts that bankruptcy costs are roughly 15% of asset value

and (senior unsecured) bonds recover on average about 51% of their face amount. Here, we

consider different default boundaries. We present the case in which the default boundary

is 100% of the total face value of firm’s outstanding bonds. The results (shown in column

4 of Table 10)) indicate that our calculated credit yield spreads are not sensitive to the

choice of default boundaries.

Average initial leverage ratio for each credit rating. It is possible that the average

leverage ratios of bonds with different credit ratings as given in Standard and Poor’s (1999)

may not be precise. To conduct a sensitivity analysis on this parameter, for each credit

rating, we choose a lower (or higher) initial leverage ratio by using the average of the initial

leverage ratio for the given credit rating and that for the credit rating immediately above

(or below) the given credit rating. The results for the lower and higher initial leverage ratios

(in column 5 of Table 10) indicate that our conclusions are not sensitive to the choices of

initial leverage ratios.

Average asset payout ratio δ. We chose the asset payout ratio to be δ = 6% in our

base case. To make sure that our results are not sensitive to this choice, we looked at two

other choices: 0% and 8%. Results (in column 6 of Table 10) indicate that our conclusions

are not sensitive to the choice of this parameter either.

Equity volatility. As discussed previously, we do not calibrate our model to match ob-

served equity volatility. Although this does not represent a difference between our approach

and traditional calculation approaches, we would like to make sure that our results are not

sensitive to this calibration choice. Our calibration can be easily modified to allow for

matching observed equity volatility as well. Doing so, however, requires us to relax a de-

gree of freedom that we have already tied down. Among the parameter choices we made,

such as the default boundary, the initial leverage ratio, and the asset payout ratio, we

can change one, two, or all of them such that equity volatility is also matched. But our

sensitivity analyses show that wide ranges of such parameter choices, while generating a

15One may even argue that it is better to use the realized equity premium to calibrate our model since

we use realized default probabilities over this time period.
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fairly large range of implied asset and thus equity volatilities, do not significantly affect our

calculated credit yield spreads, we conclude that our choice to not match equity volatility

does not significantly affect our results and conclusions.

Default probability for each credit rating. Since our calibration approach puts an

emphasis on matching historically observed default probabilities, we need to ensure that our

results are not overly sensitive to the default probability estimates that we use, especially

given that there are reasons to believe that the estimated default probabilities reported by

Moody’s may not be accurate. In one exercise, we deviate from our base case by increasing

the assumed target default probability of each credit rating by 50% (of the base case value).

Our calculated credit yield spreads (in column 7 of Table 10) are sensitive to this change,

but the overall quantitative effect remains too small to alter our conclusions.

Average recovery rate given default. Finally, we consider the impact of recovery rate.

We change the average recovery rate for senior unsecured debt from 51.31% (as estimated

by Moody’s) in our base case to 45%. This change increases our calculated credit spreads,

but the effect is again not large (see column 8 in Table 10).

5 Conclusions

We ask how much of the historically observed corporate-Treasury yield spread is due to

credit risk. This question can be best answered within the widely adopted structural

framework of credit risk valuation. The literature within this framework, however, has so

far failed to reach a consensus in answering this question.

We show that the structural framework of credit risk valuation can indeed provide a

consistent answer to this question. We reach this conclusion by calibrating a large class

of structural models — both existing and new ones — to be consistent with data on

historical default loss experience. This approach has the advantage that the calculated

credit yield spreads are generated by models that indeed realistically describe the actual

severity of expected default loss. Although calibrated to the same level of expected default

loss, different models, under very different economic assumptions, could in principle still

generate a very large range of credit risk premia that could potentially explain observed

corporate yield spreads. We show, however, that under empirically reasonable parameter

choices, these models predict fairly consistent credit risk premia. This allows us to reach

robust conclusions on the quantitative magnitude of credit risk spreads.

We conclude that, for investment grade bonds (those with a credit rating not lower

than Baa) of all maturities, credit risk accounts for only a small fraction—typically around

20%, and, for Baa-rated bonds, in the 30% range—of the observed corporate-Treasury yield
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spreads, and it accounts for a smaller fraction of the observed spreads for bonds of shorter

maturities. For junk bonds, however, credit risk accounts for a much larger fraction of the

observed corporate-Treasury yield spreads.
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Appendix

In Appendix A, we provide a brief technical review of the existing models studied in this paper,

including the required formulas for the LT and AST models. In Appendices B and C, we provide

all the formulas for real default probabilities and bond prices for four models: CDG, LS, the

mean-reverting risk premium model, and the model with a double exponential jump diffusion

firm value process.

A Review of Existing Models

For completeness, we briefly review the existing models considered in this paper. Our focus here

is on the technical setup of these models for the purpose of our calibration.

Longstaff and Schwartz (1995) (LS)

In the LS model, the interest rate is stochastic and is described by the Vasicek (1977) model

under the risk-neutral measure:

drt = κr(θ − rt) dt + σr dW rQ
t , (15)

where κr, θ, and σr are constant parameters, and W rQ is a standard Brownian motion under the

risk-neutral measure with a constant correlation with W vQ denoted as ρrV . For the interest rate

process under the real probability measure, we follow convention and assume that the interest

rate risk premium is of an affine form in rt, such that

drt = κ̄r(θ̄ − rt) dt + σr dW r
t , (16)

where κ̄r and θ̄ are constant parameters, and W r is a standard Brownian motion under the real

probability measure.

The default boundary {V ∗
t } is exogenously specified to be constant. In the event of default,

bondholders receive cash flows according to the original time schedule, but each payment, which

is now received with certainty, is only a fraction of the originally promised amount.

In the original LS model, the payout parameter δt is assumed to be zero. Here we consider

a more general case where δt = δ can be greater than zero. This allows for a net cash outflow—

beyond the amount raised from securities issuance—that is required for the firm to pay bond

coupons and dividends.

The asset risk premium πv
t is assumed to be constant in this version of the model. We will

later introduce a model that incorporates a time-varying asset risk premium.

The formula for the real cumulative default probability Pr(t, T ) for the case of constant πv
t
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can be found in Appendix B. The formulas for the bond price Pt,T can be found in Appendix C.

Anderson-Sundaresan-Tychon (1996) and Mella-Barral and Perraudin (1997)

In the Anderson-Sundaresan-Tychon and Mella-Barral and Perraudin (AST-MBP) models,

equity holders default strategically to extract concessions from bondholders in an environment

of positive bankruptcy costs. The default boundary and the payoff given default are obtained

endogenously. If equity holders have all the bargaining power, then at the endogenously deter-

mined default boundary, the payoff for bondholders will be equal to the firm asset value minus

the bankruptcy costs, bounded above by the face value of the bond.

The interest rate rt, the asset payout rate δt, and the asset risk premium πv
t are all constant.

For the simple case of a perpetual constant flow coupon bond, under the assumption that the

bankruptcy costs are a constant fraction (1 − w) of the firm value plus a fixed cost of K, the

default boundary is constant at:

V ∗
AST−MBP =

cF/r + K

w (1 + x−1)
(17)

where c is the coupon flow rate and x is defined as

x ≡ r − δ

σ2
v

− 1

2
+

[(
r − δ

σ2
v

− 1

2

)2

+
2r

σ2
v

]1/2

. (18)

The value of the perpetual bond is

BAST−MBP(t) =
cF

r



1 −
(

Vt

V ∗
AST−MBP

)−x


+ max(wV ∗
AST−MBP − K, 0)

(
Vt

V ∗
AST−MBP

)−x

. (19)

Assuming that the asset risk premium πv
t = πv is constant, then the cumulative real default

probability over (t, t + τ ], calculated with information available at t, is given by

PrAST−MBP(t, t + τ) = N

(
−b + γτ

σv
√

τ

)
+ e

− 2γb

σ2
v N

(−b + γτ

σv
√

τ

)
(20)

where b = ln(Vt/V
∗
AST−MBP), γ = πv + r − δ − σ2

v/2, and N(·) denotes the cumulative standard

normal function.

Leland (1994) and Leland and Toft (1996) (LT)

The LT model, following Black and Cox (1976), assumes that firms would issue equity to

service debt in order to avoid default, and that default occurs when the value of equity goes to

zero. This allows for the default boundary to be determined endogenously. In the event of default,

equity holders get nothing and bondholders receive a constant fraction (1 − w) of the firm asset

value, with w denoting the fractional bankruptcy costs.

The interest rate rt, the asset payout rate δt, and the asset risk premium πv
t are all constant.
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As in AST-MBP, for analytic tractability, firms in (a simplified version of) the LT model have

a perpetual bond outstanding with a constant coupon flow.16

Under the simplifying assumption that the fixed portion of the bankruptcy costs, K, is zero,

the endogenous default boundary is given by

V ∗
LT =

cF

r

1

1 + x−1
, (21)

where x is as defined in (18).

The formulas for the value of the debt and for the real default probability (under the assump-

tion of a constant asset risk premium) in the LT model take the same form as those in AST-MBP

(as in (19) and (20)), except that V ∗
AST−MBP is replaced by V ∗

LT.

Collin-Dufresne and Goldstein (2001) (CDG)

The CDG model assumes that firms adjust their outstanding debt levels in response to changes

in firm value, which makes the stochastic leverage ratio mean-reverting. The structure of the

model is similar to that of the Longstaff-Schwartz model, but the key difference is that the

default boundary V ∗
t in CDG is assumed to be mean-reverting according to:

d ln V ∗
t = κl(ln Vt − ln V ∗

t − ν) dt. (22)

For the case of a constant interest rate, the “log-leverage ratio” `t ≡ ln(V ∗
t /Vt) follows

d`t = κl(¯̀− `t) dt − σv dW v
t , (23)

where the “long-run average leverage ratio” ¯̀ is related to other parameters through

¯̀≡ −(πv + r) + δ + σ2
v/2

κl
− ν. (24)

In equation (24), δt, the asset payout rate, and πv
t , the asset risk premium, are both taken to be

constant. As in LS, CDG also allows for the interest rate to be stochastic as described by the

Vasicek (1977) model (see (15)).

The formulas for the bond price Pt,T and the real cumulative default probability Pr(t, T ) can

be found in Appendices B and C.

B Formulas of the Real Default Probability

In this section we work under the physical measure P. Let X be a new process (Vt/V
∗
t )t≥0.

16Leland and Toft (1996) also provide a valuation model for annuity-like debt. We use the simpler

perpetuity case here for ease of comparison with other models.
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B.1 Diffusion Models

All of the models with a diffusion asset value process considered in this paper are special cases of

the following class of 3-factor models:

d ln Xt = [(πv
t + rt) − δ − σ2

v/2 − µk(rt, ln Xt)]dt + σvdW v
t (25)

drt = κ̄r(θ̄ − rt) dt + σrdW r
t (26)

dπv
t = κπ(π̄v − πv

t ) dt + σπdW π
t (27)

where all the parameters are as defined before, and the function µk—affine in both r and ln X—is

non-zero only when V ∗
t is stochastic. Note that the drift function in (25) is also affine in πv,

which, like r, is a Gaussian process. As a result, one can extend the Longstaff and Schwartz

(1995) approach to the above 3-factor model and calculate its real default probabilities. Below

we consider some special cases of the model.

B.1.1 Constant Asset Risk Premium

In this case πv
t = πv ∀t, a constant. The 3-factor model reduces to a two-factor one, which includes

both LS and CDG.

Default probabilities Q(0, ·) can be calculated using an approach in the spirit of LS. Namely,

Q(0, U) =
n∑

i=1

q(ti; t0), ti = iU/n, U ∈ (0, T ], (28)

where for i = 1, 2, . . . , n,

q(ti; t0) =
N(a(ti; t0)) −

∑i−1
j=1 q(tj− 1

2

; t0)N(b(ti; tj− 1

2

))

N(b(ti; ti− 1

2

))
(29)

a(ti; t0) = −M(ti, T |X0, r0)√
S(ti|X0, r0)

(30)

b(ti; tj) = −M(ti, T |Xtj )√
S(ti|Xtj )

(31)

and where the sum on the RHS of (29) is defined to be zero when i = 1, and

M(t, T |X0, r0) ≡ E0 [ln Xt] ; (32)

S(t|X0, r0) ≡ Var0 [ln Xt] ; (33)

M(t, T |Xu) = M(t, T |X0, r0) − M(u, T |X0, r0)
Cov0[ln Xt, ln Xu]

S(u|X0, r0)
, u ∈ (t0, t) (34)

S(t|Xu) = S(t|X0, r0) −
Cov0[ln Xt, ln Xu]2

S(u|X0, r0)
, u ∈ (t0, t) (35)

Notice that we follow CDG to discretize at tj− 1

2

, j = 1, . . . , i−1, on the RHS of (29). One can see

that the implementation of this approach to computing Q(0, ·) amounts to calculating the mean

M(t, T |X0, r0) and the covariance Cov0[ln Xt, ln Xu],∀u ≤ t ≤ T .
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We now use (28)—(35) to derive the default probability Q(0, ·) for the CDG model. This

derivation method is different from that used in the original CDG model, but we use it here

because this method conveniently covers the 2-factor LS model and our time-varying risk premium

model as two special cases.

The Collin-Dufresne and Goldstein Model

In the CDG model,

µk(rt, ln Xt) = κ` [ln Xt − ν − φ(rt − θ)] (36)

where κ`, ν, and φ are constants. One has from (25) and (26) that

eκ`t ln Xt = ln X0 + (πv + ν̄κ`)
eκ`t − 1

κ`
+

∫ t

0
(1 + φκ`)rueκ`udu +

∫ t

0
σve

κ`u dW v
u (37)

rt = r0e
−βt +

ᾱ

β

(
1 − e−βt

)
+ σre

−βt
∫ t

0
eβu dW r

u (38)

where ᾱ = κ̄θ̄, β = κ̄, and

ν̄ ≡ (ν − φθ) − (δ + σ2
v/2)/κ` (39)

It follows that

eκ`tE0[ln Xt] = ln X0 +

[
(πv + ν̄κ`) + (1 + κ`φ)

ᾱ

β

]
eκ`t − 1

κ`

+ (1 + κ`φ)

(
r0 −

ᾱ

β

)
e(κ`−β)t − 1

κ` − β
(40)

and

Cov0[ln Xt, ln Xu]eκ`(t+u) = (41)

σ2
v E0

[∫ t

0
eκ`v dZv

∫ u

0
eκ`v dZv

]
(≡ I1)

+ σv(1 + φκ`) E0

[∫ t

0
eκ`v dZv

∫ u

0
eκ`v rvdv

]
(≡ I2)

+ σv(1 + φκ`) E0

[∫ u

0
eκ`v dZv

∫ t

0
eκ`v rvdv

]
(≡ I3)

+ (1 + φκ`)
2 Cov0

[∫ t

0
eκ`v rvdv,

∫ u

0
eκ`v rvdv

]
(≡ I4)

One can show that ∀t ≥ u,

I1 =
σ2

v

2κ`

(
e2κ`u − 1

)

I2 = (1 + φκ`)
ρrV σvσr

κ` + β

[
e2κ`u − 1

2κ`
− e(κ`−β)u − 1

κ` − β

]

I3 = (1 + φκ`)
ρrV σvσr

κ` + β

[
1 − e(κ`−β)t

κ` − β
+

e2κ`u − 1

2κ`
+ e(κ`+β)u e(κ`−β)t − e(κ`−β)u

κ` − β

]
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I4 = (1 + φκ`)
2 σ2

r

2β



−

(
e(κ`−β)t − 1

) (
e(κ`−β)u − 1

)

(κ` − β)2
+
(
e(κ`+β)u − 1

) e(κ`−β)t − e(κ`−β)u

κ2
` − β2

− β

κ2
` − β2

e2κ`u − 1

κ`
+

1

κ2
` − β2

(
1 − 2e(κ`−β)u + e2κ`u

)]

The Longstaff and Schwartz Model

The formulas in this model can be obtained by setting κ` to zero in CDG.

B.1.2 A Mean-Reverting Asset Risk Premium

For simplicity, we assume in this subsection that the interest rate is constant (and thus φ = 0).

In this case, the 3-factor model also reduces to a two-factor one. We can still use Eqs. (29)-(35)

to calculate Q(0, ·) but need to recalculate E0[ln Xt] and Cov0[ln Xt, ln Xu] using X and πv as the

state variables.

We have from (25) and (27) that

eκ`t ln Xt = ln X0 + (r0 + ν̄κ`)
eκ`t − 1

κ`
+

∫ t

0
πv

ueκ`udu +

∫ t

0
σve

κ`u dW v
u (42)

πv
t = πv

0e−βπt +
απ

βπ

(
1 − e−βπt

)
+ σπe−βπt

∫ t

0
eβπu dW π

u (43)

where απ = κππ̄v and βπ = κπ. In comparison with (37) and (38), it is easy to see that E0[ln Xt]

and Cov0[ln Xt, ln Xu] (and hence Q(0, ·)) can be obtained from (40) and (41) via the transform

(πv
0 , φ, r0, ᾱ, β, ρrV ) → (r0, 0, π

v
0 , απ, βπ, ρπV ). For instance,

eκ`tE0[ln Xt] = ln X0 +

(
r0 + ν̄κ` +

απ

βπ

)
eκ`t − 1

κ`
+

(
πv − απ

βπ

)
e(κ`−βπ)t − 1

κ` − βπ
(44)

B.2 The Jump Diffusion Model

In this subsection, the interest rate and all the risk premia are assumed to be constant. The

default boundary is assumed to be flat at V ∗. Under P,

d ln Vt =

(

πv + r − δ − σ2
v

2

)

dt + σvdW v
t + d

[
Nt∑

i=1

Zi

]

− λξdt, (45)

with the distribution of the jump process specified in section 2.

Consider the Laplace transform of Q(0, ·) as defined by

Q̂(s; t0) =

∫ ∞

0
e−stQ(0, t)dt (46)

An analytic solution for Q̂(s; t0) was obtained by Kou and Wang (2002, Theorem 4.1). Let

xb ≡ ln(V0/V
∗) and µx ≡ −(πv

0 + r − δ − σ2
v/2), we have

Q̂(s; t0) =
ηu − y1,s

sηu

y2,s

y2,s − y1,s
e−xby1,s +

y2,s − ηu

sηu

y1,s

y2,s − y1,s
e−xby2,s (47)
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where y1,s and y2,s are the only two positive roots for the following equation

µxy +
1

2
σ2

vy
2 + λ

(
puηu

ηu − y
+

pdηd

ηd + y
− 1

)
− s = 0 (48)

Given Q̂(s; t0)∀s > 0, we then follow Kou and Wang (2002) to calculate numerically Q(0, ·) using

the Gaver-Stehfest algorithm for Laplace inversion. For brevity, the details of this implementation

method are omitted here but can be found in Kou and Wang (2002).

C Formulas of Defaultable Bond Prices

Consider a defaultable bond with maturity T and unit face value that pays semi-annual coupons

at an annual rate of c. For simplicity, assume 2T is an integer. Let Tn, n = 1, . . . , 2T , be the

nth coupon date. In all of the four models considered in the appendix, the value of a defaultable

bond that pays semi-annual coupons is given by

P0,T =

(
c

2

) 2T−1∑

i=1

D(0, Ti)[1 − w`Q
Ti(0, Ti)] +

(
1 +

c

2

)
D(0, T )[1 − w`Q

T (0, T )] (49)

where D(0, ·) denotes the value of a default-free zero-coupon bond given by the Vasicek (1977)

model, QTi(0, Ti) represents the time-0 default probability over (0, Ti] under the Ti-forward mea-

sure, and w`, the loss rate, equals 1 − w. (Here, the Ti-forward measure is induced by using

D(0, Ti) as the numeraire.) It is easy to see from (49) that once (QTi(0, ·))i are known, the bond

price P0,T is easy to calculate.

C.1 Diffusion Models

Eqs. (29)-(35) can still be used to calculate the Ti-forward default probabilities provided that all

the expectations there are done under the T -forward measure.

Consider under the T -forward measure:

d ln Xt = [(1 + φκ`)rt + κ`ν̄ − κ` ln Xt − ρrV σvσrB(t, T )] dt + σv dW vFT
t (50)

drt = (α − β rt − σ2
rB(t, T )) dt + σr dW rFT

t (51)

where the LS notation is used for comparison: α = κrθ, β = κr, and

B(t, T ) =
1

β

(
1 − e−β(T−t)

)
(52)

C.1.1 The Collin-Dufresne and Goldstein Model

In the Collin-Dufresne and Goldstein Model, the mean M(t, T |X0, r0) can be obtained from the

following result
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eκ`tEFT
0 [ln Xt] = ln X0 + ν̄

(
eκ`t − 1

)
+

∫ t

0
(1 + φκ`)e

κ`uEFT
0 [ru]du

− ρrV σvσr

β

[
eκ`t − 1

κ`
− eβT e(κ`+β)t − 1

κ` + β

]

where

EFT
0 [ru] = r0e

−βt +

(
α

β
− σ2

r

β2

)(
1 − e−βt

)
+

σ2
r

2β2
e−βT

(
eβt − e−βt

)
+ σre

−βt
∫ t

0
eβu dW rFT

u

For the covariance, we have CovFT
0 [ln Xt, ln Xu] = Cov0[ln Xt, ln Xu].

C.1.2 The Longstaff-Schwartz Model

The price of a defaultable bond in the Longstaff-Schwartz model can be obtained by setting κ`

to zero in CDG.

C.1.3 A Model with a Mean-Reverting Asset Risk Premium

Consider now the model with a mean-reverting asset risk premium. In terms of pricing, this

model is equivalent to a one-factor CDG or LS depending on κ`, since the specification of the

drift function under the physical measure has no impact on the pricing.

C.2 The Jump Diffusion Model

Default probabilities under the Q-measure can be obtained from their counterparties under the

P -measure by the transform (πv
0 , ηu, ηd, pu, λ) → (0, ηQ

u , ηQ
d , pQ

u , λQ).
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Yield Spreads and Default Loss Rates

(for 10-year bonds)
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Figure 1: Historical average yield spreads (in basis points) for 10-year bonds of each

credit rating (from the Lehman bond index data), and the average default loss rates (from

Moody’s report by Keenan, Shtogrin, and Sobehart (1999)) for corporate bonds with each

initial credit rating over a 10-year time interval.
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Yield Spreads, Default Loss Rates, 

and Calculated Credit Spreads 

(10-Year Bonds)
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Figure 2: Historical average yield spreads (in basis points) for 10-year bonds of each

credit rating (from the Lehman bond index data), the average default loss rates (from

Moody’s report by Keenan, Shtogrin, and Sobehart (1999)) for corporate bonds with each

initial credit rating over a 10-year time interval, and the calculated credit spreads for 10-

year bonds of each credit rating under the base case.
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Table 1: The Base Case: Parameter Value Choices

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Target

Credit Leverage Equity Cumulative Recovery Avg. yld.

rating ratio premium default prob. (%) rate spreads (%)

(%) (%) 1 yr. 4 yrs. 10 yrs. (%) 4 yrs. 10 yrs.

Aaa 13.08 5.38 0.00 0.04 0.77 51.31 0.55 0.63

Aa 21.18 5.60 0.03 0.23 0.99 51.31 0.65 0.91

A 31.98 5.99 0.01 0.35 1.55 51.31 0.96 1.23

Baa 43.28 6.55 0.12 1.24 4.39 51.31 1.58 1.94

Ba 53.53 7.30 1.29 8.51 20.63 51.31 3.20 3.20

B 65.70 8.76 6.47 23.32 43.91 51.31 4.70 4.70

Table 1 shows the target parameters for calibration and the historical average yield spreads for

each class of credit rating for our base case. Leverage ratios are from Standard & Poor’s (1999).

Equity premia estimates are based on regression results in Bhandari (1988). Historical default

rates and average recovery rates are from the Moody’s report of Keenan, Shtogrin, and Sobenhart

(1999). Average yield spreads for investment-grade bonds are from the Lehman bond index data

and from Duffee (1998). Average yield spreads for junk bonds are based on Caouette, Altman,

and Narayanan (1998).

46



Table 2: The Base Case: Results from the LS Model

Panel A: Maturity = 10 years

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Target Implied

Cum. Asset Calc Avg % of

Credit Leverage Equity Default Asset Risk Credit Yield Spread

Rating Ratio Prem Prob. Vol. Prem Spread Spread due to

(%) (%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.77 32.1 4.96 10.0 63 15.8

Aa 21.2 5.60 0.99 28.4 4.91 14.2 91 15.6

A 32.0 5.99 1.55 25.6 4.89 23.3 123 19.0

Baa 43.3 6.55 4.39 25.8 5.01 56.5 194 29.1

Ba 53.5 7.30 20.63 32.4 5.48 192.3 320 60.1

B 65.7 8.76 43.91 39.5 6.46 387.8 470 82.5

Panel B: Maturity = 4 years

Aaa 13.1 5.38 0.04 36.2 4.95 1.1 55 2.1

Aa 21.2 5.60 0.23 34.4 4.90 6.0 65 9.2

A 32.0 5.99 0.35 29.8 4.85 9.9 96 10.3

Baa 43.3 6.55 1.24 28.9 4.91 32.0 158 20.3

Ba 53.5 7.30 8.51 34.3 5.29 172.3 320 53.9

B 65.7 8.76 23.32 39.6 6.25 445.7 470 94.8

Panel C: Maturity = 1 year

Aa 21.2 5.60 0.03 54.9 4.89 2.0

A 32.0 5.99 0.01 42.0 4.84 0.8

Baa 43.3 6.55 0.12 41.2 4.86 8.7

Ba 53.5 7.30 1.29 44.6 5.04 85.0

B 65.7 8.76 6.47 48.6 5.74 411.9

Table 2 reports calibration results and calculated credit yield spreads for three maturities in the base case
using the Longstaff and Schwartz (1995) model. For bonds of each credit rating and maturity, the model
calibrated to match the target initial leverage ratio (column 2), equity premium (column 3), and cumulative
default probability until bond maturity (column 4) is shown to have the implied asset volatility and the
asset risk premium given in columns 5 and 6. The credit yield spreads calculated from such calibrated
models (column 7) are also shown as a percentage (column 9) of historically observed yield spreads for the
bonds (column 8). Parameter choices are as follows: coupon rate is 8.13%; the asset payout ratio δ = 6%;
the interest rate is constant at 8%; the default boundary V ∗ equals 60% of the total face value of the firms’
bonds outstanding; and the recovery rate given default is fixed at 51.31%.
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Table 3: Effects of Stochastic Interest Rates

Panel A: Maturity = 10 years

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Target Implied

Cum. Asset Calc Avg % of

Credit Leverage Equity Default Asset Risk Credit Yield Spread

Rating Ratio Prem Prob. Vol. Prem Spread Spread due to

(%) (%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.77 31.5 4.99 6.0 63 9.6

Aa 21.2 5.60 0.99 27.5 4.95 8.6 91 9.4

A 32.0 5.99 1.55 24.5 4.94 14.5 123 11.8

Baa 43.3 6.55 4.39 24.7 5.05 38.6 194 19.9

Ba 53.5 7.30 20.63 31.3 5.47 153.9 320 48.1

B 65.7 8.76 43.91 38.4 6.42 341.9 470 72.8

Panel B: Maturity = 4 years

Aaa 13.1 5.38 0.04 36.6 4.96 0.8 55 1.5

Aa 21.2 5.60 0.23 34.8 4.91 4.6 65 7.0

A 32.0 5.99 0.35 30.0 4.88 7.5 96 7.8

Baa 43.3 6.55 1.24 29.1 4.94 25.4 158 16.1

Ba 53.5 7.30 8.51 34.3 5.26 149.2 320 46.6

B 65.7 8.76 23.32 39.3 6.15 406.0 470 86.4

Table 3 reports calibration results and calculated credit yield spreads for two maturities in the
case of stochastic interest rates, implemented by using the Longstaff and Schwartz (1995) model.
The setup is otherwise identical to that of the base case. For bonds of each credit rating and
maturity, the model calibrated to match the target initial leverage ratio (column 2), equity pre-
mium (column 3), and cumulative default probability until bond maturity (column 4) is shown
to have the implied asset volatility and the asset risk premium given in columns 5 and 6. The
credit yield spreads calculated from such calibrated models (column 7) are also shown as a per-
centage (column 9) of historically observed yield spreads for the bonds (column 8). Parameter
choices are as follows: the coupon rate is 8.162%; the asset payout ratio δ = 6%; the default
boundary V ∗ equals 60% of the total face value of the firms’ bonds outstanding; and the re-
covery rate given default is fixed at 51.31%. The parameters for the interest rate process are
r0 = 8%, κr = 0.226, θ = 0.113, σr = 4.68%, and πr

0 = −0.248. The correlation coefficient ρrV is
chosen to be −0.25.
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Table 4: Endogenous Default with the Leland-Toft Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Target Implied

Cum. Asset Calc Avg % of

Credit Leverage Equity Default Recovery Asset Risk Credit Yield Spread

Rating Ratio Prem Prob as % Vol. Prem Spread Spread due to

(%) (%) (%) of V ∗ (%) (%) (bp) (bp) default

Aaa 13.1 5.37 0.77 100.00 34.06 4.74 36.89 63 58.6

Aa 21.2 5.60 0.99 96.79 29.23 4.51 34.46 91 37.9

A 32.0 5.99 1.55 87.72 25.25 4.17 38.50 123 31.3

Baa 43.3 6.55 4.39 87.29 25.05 3.92 59.46 194 30.6

Ba 53.5 7.30 20.63 100.00 36.00 4.68 165.70 320 51.8

B 65.7 8.76 43.91 100.00 52.33 6.68 408.38 470 86.9

Table 4 reports calibration results and calculated credit yield spreads using the Leland and Toft
(1996) model. The setup is otherwise identical to that of the base case. For bonds of each credit
rating, the model calibrated to match the target initial leverage ratio (column 2), equity premium
(column 3), and cumulative default probability over 10 years (column 4) is shown to have the
implied asset volatility and the asset risk premium given in columns 6 and 7. The bond recovery
rate given default is assumed to be the lower of 51.31% of the face value or 100% of the firm
value at default (V ∗). Bond recovery as a percentage of the firm value at default, V ∗, is shown
in column 5. The credit yield spreads calculated from such calibrated models (column 8) are also
shown as a percentage (column 10) of historically observed yield spreads for the bonds (column 9).
Parameter choices are as follows: the coupon rate is 8.13%; the asset payout ratio δ = 6%; and
the interest rate is constant at 8%.

Note that the higher credit yield spreads here are due to the fact that the version of LT model
that we implement here assumes an infinite bond maturity, even though we calibrate the model
to match only the 10-year cumulative default probability. In fact, the credit yield spreads for
10-year bonds generated by such a calibrated model are indeed very close to those shown in the
base case. See section 4.3 for more details.
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Table 5: Strategic Default with the Anderson-Sundaresan-Tychon

and Mella-Barral-Perraudin Models

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Target Implied

Cum. Fixed Prop. Asset Calc Avg % of

Credit Leverage Equity Default Bkrptcy Bkrptcy Asset Risk Credit Yield Spread

Rating Ratio Prem Prob. Cost Cost Vol. Prem Sprd. Sprd. due to

(%) (%) (%) (K/V0) (1 − ω) (%) (%) (bp) (bp) Default

Aaa 13.1 5.38 0.77 2.40 46.36 25.00 4.73 31.22 63 49.5

Aa 21.2 5.60 0.99 7.01 24.41 22.00 4.52 33.33 91 36.6

A 32.0 5.99 1.55 17.23 0.69 19.00 4.26 39.48 123 32.1

Baa 43.3 6.55 4.39 27.00 0.00 16.11 4.10 59.41 194 30.6

Table 5 reports calibration results and calculated credit yield spreads using the Anderson-Sundaresan-
Tychon (1996) and Mella-Barral and Perraudin (1997) models. The setup is otherwise identical
to that of the base case. For bonds of each credit rating, the model calibrated to match the target
initial leverage ratio (column 2), equity premium (column 3), and cumulative default probability
over 10 years (column 4) is shown to have the implied asset volatility and the asset risk premium
given in columns 7 and 8. Columns 5 and 6 show, respectively, the fixed bankruptcy cost (K) (as
a percentage of the firm’s initial asset value) and the proportional bankruptcy cost (1 − ω) (as a
percentage of the firm’s asset value at the endogenously determined default boundary V ∗) that
the model can assume in order to achieve the desired bond recovery rate of 51.31% (of face value).
The credit yield spreads calculated from such calibrated models (column 9) are also shown as a
percentage (column 11) of historically observed yield spreads for the bonds (column 10). Param-
eter choices are as follows: the coupon rate is 8.13%; the asset payout ratio δ = 6%; and the
interest rate is constant at 8%.

Junk bond results are not available because we are not able to calibrate such model to match
junk bond target parameters, especially the initial leverage ratio.

Note that the higher credit yield spreads here are due to the fact that the AST-MBP models
assume an infinite bond maturity, even though we calibrate the model to match only the 10-year
cumulative default probability. In fact, the credit yield spreads for 10-year bonds generated by
such a calibrated model are indeed very close to those shown in the base case. See section 4.4 for
more details.
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Table 6: Mean-Reverting Leverage Ratios with the Collin-Dufresne

and Goldstein Model

Panel A: Maturity = 10 years

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Target Implied

Cum. Asset Calc Avg % of

Credit Leverage Equity Default Asset Risk Credit Yield Spread

Rating Ratio Prem Prob. Vol. Prem Spread Spread due to

(%) (%) (%) (%) (%) (bps) (bps) Default

Aaa 7.8 5.38 0.77 25.9 4.96 11.4 63 18.2

Aa 12.7 5.60 0.99 24.9 4.91 14.9 91 16.4

A 19.2 5.99 1.55 24.5 4.89 22.5 123 18.3

Baa 26.0 6.55 4.39 26.3 5.00 52.3 194 26.9

Ba 32.1 7.30 20.63 32.9 5.46 182.7 320 57.1

B 39.4 8.76 43.91 39.9 6.43 371.6 470 79.1

Panel B: Maturity = 4 years

Aaa 7.8 5.38 0.04 25.9 4.95 0.0 55 0.1

Aa 12.7 5.60 0.23 31.9 4.90 6.3 65 9.7

A 19.2 5.99 0.35 29.1 4.86 9.9 96 10.3

Baa 26.0 6.55 1.24 29.6 4.91 31.1 158 19.7

Ba 32.1 7.30 8.51 35.8 5.28 168.0 320 52.5

B 39.4 8.76 23.32 41.8 6.21 435.3 470 92.6

Table 6 reports calibration results and calculated credit yield spreads for two maturities using the
Collin-Dufresne and Goldstein model, in which the firm adjusts its debt level such that the leverage
ratio is mean-reverting. The setup is otherwise identical to that of the base case. For bonds of
each credit rating and maturity, the model calibrated to match the target initial leverage ratio
(column 2), equity premium (column 3), and cumulative default probability until bond maturity
(column 4) is shown to have the implied asset volatility and the asset risk premium given in
columns 5 and 6. The credit yield spreads calculated from such calibrated models (column 7)
are also shown as a percentage (column 9) of historically observed yield spreads for the bonds
(column 8). Parameter choices are as follows: the coupon rate is 8.13%; the asset payout ratio
δ = 6%; the interest rate is constant at 8%; the recovery rate given default is fixed at 51.31%; the
mean-reversion coefficient of the leverage ratio κ` = 0.2; and the long-term mean leverage ratio
is 38%.
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Table 7: A Counter-Cyclical Market Risk Premium

Panel A: Maturity = 10 years

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Target Implied

Cum. Asset Calc Avg % of

Credit Leverage Equity Default Asset Risk Credit Yield Spread

Rating Ratio Prem Prob. Vol. Prem Spread Spread due to

(%) (%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.37 0.77 33.2 4.96 13.1 63 20.8

Aa 21.2 5.60 0.99 29.4 4.92 18.2 91 20.0

A 32.0 5.99 1.55 26.5 4.90 28.8 123 23.4

Baa 43.3 6.55 4.39 26.7 5.04 65.2 194 33.6

Ba 53.5 7.30 20.63 33.0 5.53 202.7 320 63.3

B 65.7 8.76 43.91 39.9 6.48 392.9 470 83.6

Panel B: Maturity = 4 years

Aaa 13.1 5.38 0.04 37.1 4.95 1.6 55 3.0

Aa 21.2 5.60 0.23 35.3 4.90 7.9 65 12.1

A 32.0 5.99 0.35 30.7 4.86 12.8 96 13.4

Baa 43.3 6.55 1.24 29.7 4.93 38.7 158 24.5

Ba 53.5 7.30 8.51 35.0 5.34 186.1 320 58.1

B 65.7 8.76 23.32 40.0 6.30 458.7 470 97.6

Table 7 reports calibration results and calculated credit yield spreads for two maturities under
the assumption that market asset risk premia are counter-cyclically time varying. The modeling
and parameter setup is otherwise identical to that of the base case. For bonds of each credit
rating and maturity, the model calibrated to match the target initial leverage ratio (column 2),
equity premium (column 3), and cumulative default probability until bond maturity (column 4)
is shown to have the implied asset volatility and the asset risk premium given in columns 5 and 6.
The credit yield spreads calculated from such calibrated models (column 7) are also shown as a
percentage (column 9) of historically observed yield spreads for the bonds (column 8). Parameter
choices are as follows: the coupon rate is 8.13%; the asset payout ratio δ = 6%; the interest
rate is constant at 8%; the default boundary V ∗ equals 60% of the total face value of the firms’
bonds outstanding; the recovery rate given default is fixed at 51.31%; and the parameters in the
risk-premium process are κπ = 0.202, σπ = 3.1%, and ρπV = −0.35.
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Table 8: A Model with a Jump-Diffusion Firm Value Process

Panel A: Maturity = 10 years

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Target Implied

Cum. Jump Asset Calc Avg % of

Credit Leverage Equity Default Diffu. Jump Risk Risk Credit Yield Spread

Rating Ratio Prem Prob Vol. Vol. Prem Prem Spread Spread due to

(%) (%) (%) (%) (%) (%) (%) (bp) (bp) default

Aaa 13.1 5.37 0.77 8.20 31.0 4.96 4.96 11.0 63 17.4

Aa 21.2 5.60 0.99 8.20 27.2 4.91 4.91 15.8 91 17.3

A 32.0 5.99 1.55 8.20 24.3 4.90 4.90 26.1 123 21.2

Baa 43.3 6.55 4.39 8.20 24.5 5.02 5.02 61.4 194 31.7

Ba 53.5 7.30 20.63 8.20 31.3 5.51 5.51 198.9 320 62.2

B 65.7 8.98 43.91 8.20 38.7 6.48 6.48 394.9 470 84.0

Panel B: Maturity = 4 years

Aaa 13.1 5.37 0.04 8.20 36.0 4.95 4.95 1.7 55 3.1

Aa 21.2 5.60 0.23 8.20 33.5 4.90 4.90 6.8 65 10.5

A 32.0 5.99 0.35 8.20 28.6 4.86 4.86 11.4 96 11.9

Baa 43.3 6.55 1.24 8.20 27.7 4.93 4.93 35.9 158 22.7

Ba 53.5 7.30 8.51 8.20 33.4 5.32 5.32 180.7 320 56.5

B 65.7 8.98 23.32 8.20 38.9 6.46 6.46 463.0 470 98.5

Panel C: Maturity = 1 year

Aa 21.2 5.60 0.03 8.20 54.0 4.89 4.89 1.8

A 32.0 5.99 0.01 8.20 44.0 4.84 4.84 1.1

Baa 43.3 6.55 0.12 8.20 40.6 4.86 4.86 9.9

Ba 53.5 7.30 1.29 8.20 43.9 5.06 5.06 90.5

B 65.7 8.76 6.47 8.20 47.9 5.80 5.80 427.1

Table 8 reports calibration results and calculated credit yield spreads for three maturities using the model
with a double-exponential jump-diffusion firm asset value process. The model and parameter setup is
otherwise identical to that of the base case. See previous table captions for an explanation of all the
columns of the table.

The jump process under the real probability measure is calibrated to be roughly consistent with the
empirical results in Anderson, Benzoni, and Lund (2001), with parameters given by λ = 3, pu = pd = 0.5,
ηu = ηd = 30, and a jump volatility given by column 5. The real to risk-neutral probability transformation
is assumed to be such that all of the asset risk premium is due to the jump risk premium (shown in
column 7). Other parameter choices are as follows: the coupon rate is 8.13%; the asset payout ratio
δ = 6%; the interest rate is constant at 8%; the default boundary V ∗ equals 60% of the total face value of
the firms’ bonds outstanding; and the recovery rate given default is fixed at 51.31%.
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Table 9: Extreme Parameters in the Jump-Diffusion Model

Panel A: Maturity = 10 years

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Target Implied

Cum. Jump Asset Calc Avg % of

Credit Leverage Equity Default Jump Diffu. Risk Risk Credit Yield Spread

Rating Ratio Prem Prob Vol. Vol. Prem Prem Spread Spread due to

(%) (%) (%) (%) (%) (%) (%) (bp) (bp) default

Aaa 13.1 5.37 0.77 10.35 30.8 5.00 5.01 53.1 63 84.3

Aa 21.2 5.60 0.99 10.35 26.9 5.01 5.01 72.6 91 79.8

A 32.0 5.99 1.55 10.35 24.0 5.08 5.08 101.8 123 82.8

Baa 43.3 6.55 4.39 10.35 24.6 5.31 5.31 154.5 194 79.7

Ba 53.5 7.23 20.63 10.35 30.9 5.24 5.25 263.2 320 82.3

B 65.7 8.71 43.91 10.35 38.9 6.70 6.70 456.0 470 97.0

Panel B: Maturity = 4 years

Aaa 13.1 5.37 0.04 10.35 35.1 4.98 4.98 33.9 55 61.7

Aa 21.2 5.60 0.23 10.35 32.9 4.98 4.98 61.6 65 94.8

A 32.0 5.99 0.35 10.35 27.9 5.04 5.04 91.0 96 94.8

Baa 43.3 6.55 1.24 10.35 27.4 5.26 5.26 148.7 158 94.1

Ba 53.5 7.23 8.51 10.35 33.5 5.71 5.71 305.0 320 95.3

B 65.7 8.71 23.32 10.35 39.0 6.71 6.72 570.4 470 121.4

Panel C: Maturity = 1 year

Aa 21.2 5.60 0.03 10.35 53.5 4.95 4.95 48.9

A 32.0 5.99 0.01 10.35 23.6 4.94 4.94 50.4

Baa 43.3 6.55 0.12 10.35 39.2 5.17 5.17 124.4

Ba 53.5 7.30 1.29 10.35 43.8 5.61 5.61 257.5

B 65.7 8.42 6.47 10.35 48.1 6.35 6.35 621.5

Table 9 reports calibration results and calculated credit yield spreads for three maturities by using an
extreme set of parameter choices in the model with a double-exponential jump-diffusion firm asset value
process. The model and parameter setup is otherwise identical to that of the base case. See previous table
captions for an explanation of all the columns of the table.

The jump process under the real probability measure is taken to be extreme, with parameters given
by λ = 0.1, pu = pd = 0.5, ηu = ηd = 5, and a jump volatility given by column 5. The real to risk-neutral
probability transformation is assumed to be such that all of the asset risk premium is due to the jump risk
premium (shown in column 7). Other parameter choices are as follows: the coupon rate is 8.13%; the asset
payout ratio δ = 6%; the interest rate is constant at 8%; the default boundary V ∗ equals 60% of the total
face value of the firms’ bonds outstanding; and the recovery rate given default is fixed at 51.31%.
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Table 10: Sensitivity Aanalysis

Panel A: Maturity = 10 years

(1) (2) (3) (4) (5) (6) (7) (8)

Credit Base Equity Default Leverage Payout Default Recovery

rating case prem boundary ratio ratio prob. rate

(%) (%) (%) (%) (%) (%) (%)

Aaa 15.8 22.3 18.0 14.6 /16.9 14.0 /16.7 21.6 17.9

Aa 15.6 21.8 17.9 14.7 /16.5 13.4 /16.6 21.0 17.6

A 19.0 25.8 21.9 18.1 /19.8 16.0 /20.5 25.3 21.5

Baa 29.1 36.8 33.2 28.2 /29.9 25.1 /31.3 38.7 33.1

Ba 60.1 68.1 68.3 59.0 /61.4 56.4 /62.0 82.4 69.1

B 82.5 88.4 95.0 81.1 /83.9 80.4 /83.6 118.7 96.3

Panel B: Maturity = 4 years

Aaa 2.1 2.8 2.4 1.9 /2.2 2.0 /2.1 3.0 2.3

Aa 9.2 11.9 10.4 8.8 /9.7 8.7 /9.4 13.0 10.4

A 10.3 13.2 11.7 9.8 /10.7 9.5 /10.6 14.4 11.6

Baa 20.3 24.8 22.8 19.7 /20.8 18.7 /20.9 28.2 22.9

Ba 53.9 60.4 60.1 53.0 /54.8 51.3 /55.0 75.8 61.4

B 94.8 101.7 109.3 93.5 /96.3 91.6 /96.2 135.3 109.2

Table 10 reports sensitivity analysis results. The numbers shown are the percentages of the
observed yield spreads that can be explained by credit risk under various parameter choices.
Column 2 gives the results for the base case; i.e., column 2 of Table 10 is equivalent to column 9
of Table 2. Each of columns 3-8 gives results for a case that is identical to the base case except
for the choice of one parameter. The difference with the base case is as follows: for column 3, the
equity premium is higher by 2%; for column 4, the default boundary is at 100% (instead of 60%)
of the bond face value; for column 5, for each credit rating, the average initial leverage ratio is
the average of the initial leverage ratio for the given credit rating and that of the credit rating
immediately above/below the given credit rating; for column 6, the asset payout ratio is 0%/8%
(instead of 6%), respectively; for column 7, the target default probability for each credit rating is
chosen to be 150% of those provided by Moody’s (used in the base case); for column 8, the target
recovery rate upon default is assumed to be 45% (instead of 51.3%).
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